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Simple Summary: There is an alarming increase of cardiovascular disease (CVD) and type 2 diabetes
(T2D) in Mexican nationals and Mexican Americans. Studying adipose tissue (AT) dysfunction and
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early biomarkers of cardiovascular and immunometabolic risk in Mexican nationals may have a
strong impact on future public health policies for US-born Mexican Americans and other populations
of Mexican origin in the US. The goal of this study is to evaluate the early transition towards
healthy/unhealthy adipose tissue expansion to identify AT dysfunction through systemic, molecular
and OMICS measures in the fasting and fed states in symptom-free volunteers with no history of
age-related chronic diseases in support of precision medicine and discovery.

Abstract: We previously reported preliminary characterization of adipose tissue (AT) dysfunction
through the adiponectin/leptin ratio (ALR) and fasting/postprandial (F/P) gene expression in
subcutaneous (SQ) adipose tissue (AT) biopsies obtained from participants in the GEMM study,
a precision medicine research project. Here we present integrative data replication of previous
findings from an increased number of GEMM symptom-free (SF) adults (N = 124) to improve
characterization of early biomarkers for cardiovascular (CV)/immunometabolic risk in SF adults
with AT dysfunction. We achieved this goal by taking advantage of the rich set of GEMM F/P 5 h
time course data and three tissue samples collected at the same time and frequency on each adult
participant (F/P blood, biopsies of SQAT and skeletal muscle (SKM)). We classified them with the
presence/absence of AT dysfunction: low (<1) or high (>1) ALR. We also examined the presence of
metabolically healthy (MH)/unhealthy (MUH) individuals through low-grade chronic subclinical
inflammation (high sensitivity C-reactive protein (hsCRP)), whole body insulin sensitivity (Matsuda
Index) and Metabolic Syndrome criteria in people with/without AT dysfunction. Molecular data
directly measured from three tissues in a subset of participants allowed fine-scale multi-OMIC
profiling of individual postprandial responses (RNA-seq in SKM and SQAT, miRNA from plasma
exosomes and shotgun lipidomics in blood). Dynamic postprandial immunometabolic molecular
endophenotypes were obtained to move towards a personalized, patient-defined medicine. This
study offers an example of integrative translational research, which applies bench-to-bedside research
to clinical medicine. Our F/P study design has the potential to characterize CV/immunometabolic
early risk detection in support of precision medicine and discovery in SF individuals.

Keywords: metabolically healthy/unhealthy phenotype; adipose tissue dysfunction; postprandial
inflammatory response; low-grade chronic subclinical inflammation; fat and muscle tissue biopsies;
OMICs molecular signatures; symptom-free volunteers

1. Introduction

Certain individuals can be considered metabolically healthy despite their long-standing
and high degree of body fat accumulation. This effect can be thought of as healthy AT
expansion. On the other hand, unhealthy AT expansion is a major contributor to the sys-
temic metabolic disturbances that are characteristic of obesity and type 2 diabetes mellitus
(T2DM) [1]. The loss of expansion capacity can occur in patients with normal weight,
explaining the existence of MUH lean subjects [2,3].

Maintaining a body mass index (BMI) in the ideal range of 20.0–25.0 kg/m2 may
effectively reduce the risk of early death from cardiovascular and immunometabolic dis-
ease [4]. In addition, subjects exhibiting MH obesity (MHO) are not at increased risk of
cardiovascular events compared to MH people in the normal weight range. It appears that,
independent of BMI, AT dysfunction [5] triggers early molecular events that ultimately
lead both to insulin resistance (IR) and also to low-grade chronic subclinical inflammation
(LGCSI) and subsequent morbidity and mortality. The recently developed ALR correlates
with IR better than adiponectin or leptin alone [6]. This emerging biomarker decreases
with increasing number of cardiometabolic risk factors, reflecting the functionality of AT,
and negatively correlates with markers of LGCSI [7]. The ALR has been suggested as a
significant marker of AT dysfunction and inflammation [8,9].
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Cardiovascular Disease (CVD) and T2DM are serious public health problems among
Mexican nationals [10] and Mexican Americans [11]. Identifying MH/MUH parameters
occurring simultaneously with AT dysfunction markers in Mexican nationals will enhance
the understanding of early underlying biology of T2DM and CVD [12,13]. The knowledge
gained will have a strong impact on future public health policies to decrease the burden of
T2DM and CVD in Hispanics, Mexican Americans and populations of Mexican origin in
the US.

The GEMM family study (Genética de las Enfermedades Metabólicas en México,
Genetics of Metabolic Diseases in Mexico) is a bi-national, multi-center collaborative study
of cardiovascular risk phenotypes of immunometabolic origin (CVRIMO) related to the
risk of T2DM and CVD. The GEMM study is a longitudinal, family-based, precision
medicine research project. In addition, known relatedness provides one level of informed
adjustment for admixture, an important consideration given the diverse ancestry of modern
Mexicans and many other cohorts. GEMM has acquired data directly from three tissues
that are highly relevant to immunometabolism: AT, SKM and blood (immune system).
Our measurements in blood and tissues were taken over a time course to allow fine
scale multi-OMIC profiling of individual postprandial responses. Unlike studies utilizing
tissue repositories of poorly-characterized origin, our study obtained tissues from a well-
characterized cohort of symptom-free adults of common ancestry [14,15].

Precision and personalized medicine, linked to the identification of early risk and
prevention instead of curative pathological symptoms, is rapidly taking place in the
immunometabolic and CVD field. This paper aims to identify early biomarkers of im-
munometabolic dysregulation in persons without clinical symptoms, which may define a
future MUH phenotype, and at characterizing the AT dysfunction phenotype at a postpran-
dial systemic and molecular level in SF individuals from the GEMM study. Our working
hypothesis is that by comparing the metabolically healthy vs. unhealthy phenotype in our
SF participants and their ALR levels, we will be able to screen for presence or absence of
systemic immunometabolic dysfunction. We will also be able to identify in them, within
the normal variation, significant differences in circulating levels of proinflammatory cy-
tokines and the presence of impaired postprandial peaks from hormones related to the
insulin–glucose axis. This paper increases and replicates previous published data from
80 individuals, with a focus on subcutaneous AT profiling [15].

2. Methods

Recruitment of study participants: As of February 2020, GEMM had performed the
meal challenge, tissue biopsies and sample collection for 225 participants [14,15]. Unfor-
tunately, the COVID-19 pandemic forced us to temporarily stop recruitment. However,
we were able to bring samples from 124 study participants to the US in December 2019
and have obtained data from these recruited participants (81 females and 43 males). Our
cohort is comprised of SF volunteers that were carefully screened to rule out presence of
any chronic or acute inflammatory disease, as described in detail elsewhere [14–16].

Mixed Meal Challenge: GEMM participants were given an innovative balanced mixed-
meal challenge [17]. We provided a mixed meal in the form of Ensure® Plus liquid shake
from Abbott Laboratories (macronutrient composition: 65% carbohydrate, 15% protein and
20% fat) dosed at 30% of each participant’s resting energy expenditure in Kcal/day. This
dosage mimics the first morning meal after an overnight fast and allows each participant to
receive his/her own ideal calorie amount as dictated by his/her own resting metabolic rate
and expenditure. Our goal was to compare the metabolic response to a fixed macronutrient
composition among each participant [18]. We chose a liquid shake instead of a solid meal
for easier means to administer the mixed meal challenge.

Phenotyping Methodology: We recruited study participants according to established
guidelines and strategies [19]. We chose to initially classify our SF participants with
the presence/absence of adipose tissue dysfunction into two groups according to their
ALR cut-off point > 1 or <1 [7,9]. The different experimental groups were established
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through adiponectin and leptin circulating measures to determine the adiponectin/leptin
ratio (ALR) trait and to characterize adipose tissue dysfunction. The rationale for this
approach is that a low ALR as a marker of AT dysfunction is characterized by a lower
secretion of adiponectin in relation to leptin levels, triggering unhealthy adipose tissue
hypoxia, proinflammatory macrophage polarization traits, altered adipokine profile and
insulin resistance (IR). Bioimpedance was measured by Tanita BC—418 Body Composition
Analyzer, and body composition by dual energy X-ray absorptiometry. A wide range of
clinical biochemistries, hormones, cytokines and endophenotypes were measured for F/P
metabolic assessments through analyte categories, including β-cell and the insulin–glucose
axis, inflammation endophenotypes and lipid–lipoprotein metabolism. These biochemical
phenotypes were analyzed on a Luminex 100IS platform and an Immulite 1000 which runs
enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) analyses.

Shotgun Lipidomics: Lipidomics analysis serves as a powerful tool for understand-
ing the biochemical and cellular mechanisms underlying lipid-related immunometabolic
disease processes by quantifying the changes of individual lipid classes, subclasses and
molecular species [20]. Plasma samples were transported to Dr. Xianlin Han’s laboratory
at the University of Texas Health Sciences Center San Antonio [21]. Lipids were extracted
with chloroform/methanol in the presence of a cocktail of internal standards [22] and
analyzed by multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL),
as previously described [14,15,23].

miRNA Sequencing from plasma exosomes: Exosomal miRNA was isolated from
1 mL of plasma using the Plasma/Serum Exosome Purification and RNA Isolation Mini Kit
(Norgen, Thorold, ON, Canada). The quality and quantity of miRNA were assessed using
the Low Abundance RNA Quantification Kit (Norgen). Conversion of miRNA into a cDNA
library was performed using the NEXTflex Illumina Small RNA-Seq Kit v3 (Bio Scientific,
Phoenix, AZ, USA). The purification and enrichment of cDNA by PCR was performed
to create cDNA libraries. Forty-eight sample libraries were pooled and quantified using
the Kapa Library ABI Prism Quantification kit. Library pools were sequenced using a
commercial service.

Methodology RNA isolation: Total RNA was isolated from pre- and post-prandial
samples for each tissue type. Isolation from adipose and muscle shock frozen tissue used
a Direct-zol RNA Miniprep Plus kit w/TRI reagent (Zymo Research, Tustin, CA, USA).
Tissue was homogenized in TRI reagent using a Beadbeater (Biospec Products, Bartlesville,
OK, USA). Total RNA was isolated from blood samples using the TempusTM spin RNA
isolation kit (ThermoFisher Scientific, Waltham, MA, USA). RNA quantity was determined
using a QubitTM RNA BR assay kit (ThermoFisher Scientific), and RNA quality/integrity
was assessed using the RNA screen tape assay (Agilent Technologies, Santa Clara, CA,
USA). The GLOBINclearTM kit (ThermoFisher Scientific) was used to isolate globin mRNA
from total RNA in blood.

RNASeq of RNA from fat and muscle: mRNA (from total RNA) was converted into a
cDNA library using the Kapa mRNA HyperPrep kit for Illumina Platforms and unique
dual-indexed adapter kit (Kapa Biosystem, Wilmington, MA, USA). Library quality was
checked using D1000 Screen Tapes (Agilent Technologies). Samples were quantified by
qPCR using the Kapa Library ABI Prism Quantification kit (Kapa Biosystems) before
pooling, and pools were quantified using the same kit after pooling 24 samples to load on
one flow cell lane. Library pools were sequenced using a commercial service.

Multidimensional analysis platform development: For this paper, we used FunRich,
an open-access, standalone functional enrichment and network analysis tool to perform
analysis on background databases that are integrated from heterogeneous genomic and
proteomic resources (>1.5 million annotations) [24,25] and the statistical software R ver-
sion 4.1.1 (R Core Team, 2021, https://www.R-project.org/, accessed on 15 October 2021).

Statistical Analysis: Data are presented as mean ± standard deviation (SD), unless
otherwise indicated. Differences between groups are analyzed by two-tailed unpaired
Student’s t-tests, as appropriate. The calculations were performed using JMP® 14.2.0 (SAS

https://www.R-project.org/
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Institute Inc., Cary, NC, USA) and GraphPad Prism 6 (GraphPad Software, Inc., La Jolla,
CA, USA). Multivariate linear regression analysis was used to measure the strength of the
relationship between our immunometabolic F/P phenotypes with the ALR. For statistical
analysis of independent multiple testing, we used a one-way analysis of variance (ANOVA)
and Tukey’s multiple comparison test. Our models incorporated the random effect of
kinship and included age and sex as covariates. The analysis of the relative gene expression
data was conducted by using the delta-delta Ct method to analyze the relative changes in
gene expression from our real-time quantitative PCR experiments. This approach relates
to the PCR signal of the target transcript in a treatment group to that of another sample
such as an untreated control as has been described by Livak and Schmittgen [26]. One-way
ANOVA was used to study the association between serum stimulation time and the level
of gene expression. Fold increase in mRNA was the dependent variable.

3. Results

We chose to initially classify our SF participants with the presence/absence of adi-
pose tissue dysfunction into two groups according to their ALR cut-off point > 1 or
<1 [7,9]. We found interesting differences between the high (H)ALR and low (L)ALR groups.
Tables 1 and 2 show the demographic characteristics and immunometabolic parameters
for the participants with a (H)ALR or a (L)ALR in our symptom-free (SF) GEMM cohort.
Eighty-four individuals had an ALR > 1, and 40 individuals had an ALR < 1. There were
significant and striking differences of non-traditional immunometabolic biomarkers [27,28]
between individuals with a (H)ALR vs. a (L)ALR. Systemic levels of leptin, weight, waist
circumference, % body fat, circulating proinflammatory levels of IL-6, plasminogen activa-
tor inhibitor (PAI)-1, hsCRP and fibrinogen and the 5 h postprandial triglyceride curves
were significantly increased in the group with AT dysfunction. Our data also showed
significantly lower levels of adiponectin. All phenotypes pertaining to the insulin–glucose
axis (fasting and 2 h insulin levels, 2 h postprandial glucose levels, fasting glucagon, the
Matsuda and the HOMA-IR indexes and curves of 5 h glucose and GLP-1) in the (L)ALR
category were impaired when compared with the (H)ALR group (Tables 1 and 2).

Table 1. Demographic characteristics and clinical parameters for the adipose tissue dysfunction phenotype in our symptom-
free GEMM volunteers.

Demographic Characteristics Phenotypes and Cut-Offs (Mean ± SD)
N = 124 Adipose Tissue (Dys)function

Sympton-Free Participants
(Metabolic Risk Criteria) ALR > 1 (N = 84) ALR < 1 (N = 40) p

ALR 6.7 ± 10.0 0.6 ± 0.3 <0.0001
Age 37 ± 14 39 ± 14 0.3887

Weight (kg) 70 ± 15 84 ± 16 <0.0001
Waist Circunference (cm) 87 ± 12 99 ± 15 <0.0001

BMI (kg/m2) 27 ± 5 32 ± 6 <0.0001
% Fat Total 34 ± 9 40 ± 8 <0.0001

Systolic Pressure (mmHg) ≥ 130 111 ± 11 111 ± 14 0.7483
Diastolic Pressure (mmHg) ≥ 85 70 ± 10 72 ± 10 0.3103
Fasting Glucose (mg/dL) ≥ 100 97 ± 22 110 ± 29 0.0419

2-h Glucose (mg/dL) ≥ 140 127 ± 42 145 ± 54 0.0935
Triglycerides (mg/dL) ≥ 150 118 ± 51 150 ± 57 0.0007

HDL-cholesterol (mg/dL) < 40, Men; <50 Women 48 ± 14 42 ± 11 0.0313
High sensitive C-reactive protein (mg/L) (>90th percentile) * 10.0 ± 13.8 19.6 ± 22.2 0.0027

Whole body insulin resistance (Matsuda index) ** 4.6 ± 4.0 2.7 ± 2.9 <0.0001

Absence of diagnosis or therapy of cardiometabolic diseases: T2D, hypertension, dyslipidemia, NAFLD, CKD, or CVD; or treatment with
blood pressure, lipid, or diabetes medications.* hsCRP 90% percentile: >35.72 mg/L; ** Whole body insulin resistant: equal or lower
than 2.5.
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Table 2. Immunometabolic and postprandial parameters for the adipose tissue dysfunction phenotype in our symptom-free
GEMM volunteers.

Immunometabolic and Postprandial Phenotypes Phenotypes (Mean ± SD)
N = 124 Adipose Tissue (Dys)function

Sympton-Free Participants ALR > 1 (N = 84) ALR < 1 (N = 40) p

Adiponectin (µg/mL) 32.7 ± 33.0 10.1 ± 5.2 <0.0001
Leptin (ng/mL) 8.7 ± 6.5 21.0 ± 18.4 <0.0001
TNFa (pg/mL) 5.0 ± 2.9 5.2 ± 2.8 0.6290
IL-6 (pg/mL) 9.1 ± 22.6 8.6 ± 9.5 0.0014

MCP-1 pg/mL 108.2 ± 143.9 107.1 ± 41.8 0.0544
PAI-1 (pg/mL) 34,169.0 ± 29,375.5 39,182.1 ± 30,956.3 0.2658

Fibrinogen (mg/dL) 107.7 ± 40.8 131.4 ± 73.4 0.0355
Fasting Insulin (microU/mL) 14.6 ± 18.6 25.2 ± 20.3 <0.0001

C-peptide (pg/mL) 1.2 ± 0.5 1.9 ± 0.9 <0.0001
Insulin 120′ [microU/mL] 64.8 ± 44.4 120.9 ± 74.4 <0.0001

HOMA-IR 3.6 ± 4.7 7.2 ± 6.5 <0.0001
Glucagon (pg)mL) 47.4 ± 64.2 46.5 ± 45.3 0.5168

GLP-1 (pg/mL) 13.0 ± 36.3 17.3 ± 44.3 0.8721
Leptin AUC (5h) 2598 6194 0.0002
Insulin AUC (5h) 16,847 28,158 0.0821
Glucose AUC (5h) 36,486 40,883 0.1124

Triglycerides AUC 5h 48,220 59,798 0.0025
GLP-1 AUC 5h 4743 5346 0.1306

Glucagon AUC 5h 18,487 17,435 0.1988
C-peptide AUC 5h 916.4 1246 0.0821

We estimated the presence/absence of metabolic health (MH and MUH) among the
SF GEMM subjects (according to their ALR cut-off point > 1 or <1) using the proposed
criteria for defining MH/MUH. This was based on the number of metabolic syndrome
parameters present and an assessment of insulin sensitivity (using the Matsuda index
score [29]) and LGCSI [30] as determined by hsCRP levels [4,31,32] (Figure 1). We identified
three subgroups of symptom-free individuals (Figure 1): (i) Group 1: subjects with a
(H)ALR having <2 of the metabolic syndrome risk factors and the absence of IR and LGCSI;
(ii) Group 2: subjects with a (H)ALR having≥2 MUH phenotypes for metabolic risk and the
presence of IR and LGCSI; and (iii) Group 3: the same characteristics as Group 2 but with a
(L)ALR (Table 3). The proposed criteria to identify MH individuals was based on cutoff
values for a healthy cardiometabolic profile [4,29,32–35]. Reference values in Mexican
Americans have been determined with a HOMA-IR > 3.80 as having clear correlates of
insulin resistance [36].

Table 3. Prevalence and percentages of parameters and cut-offs widely used to define metabolic risk and a healthy/unhealthy
cardiometabolic profile (MH/MUH) in subjects with adipose tissue dysfunction determined by a mean (H) or (L)ALR.

Prevalence and Percentage of Individuals with Risk Phenotypes
Group 1 (N = 41) Group 2 (N = 43) Group 3 (N = 40)

MH/MUH risk criteria and cut-offs Mean ALR 9.5 ± 13.0 Mean ALR 4.0 ± 4.5 Mean ALR 0.6 ± 0.3
Diabetic A1c > 6.5 0 (0.0%) 3 (7.0%) 4 (10.0%)

Prediabetic A1c 5.7–6.4 1 (2.4%) 6 (14.0%) 7 (17.5%)
Matsuda Index < 2.5 4 (9.8%) 17 (39.5%) 25 (62.5%)

HOMA-IR > 2.6 12 (29.3) 16 (37.2%) 28 (70.0%)
hsCRP > 35.7 0 (0.0%) 4 (9.3%) 8 (20.0%)
Glucose > 100 0 (0.0%) 28 (65.1%) 16 (40.0%)

Triglycerides > 150 3 (7.3%) 17 (39.5%) 16 (40.0%)
HDL < 40 Men < 50 Women 16 (39.0%) 36 (83.7%) 33 (82.5%)

Dias BP > 85 1 (2.4%) 5 (11.6%) 4 (10.0%)
Sys BP > 130 0 (0.0%) 5 (11.6%) 4 (10.0%)

Waist > 88 Women - >102 Men 3 (7.3%) 26 (60.5%) 30 (75.0%)
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Figure 1. Number of cardiometabolic risk phenotypes among our symptom-free participants (N = 124)
stratified by a very high ALR (9.5, N = 41), high ALR (4.0, N = 43) and low ALR (0.6, N = 40).

We performed shotgun lipidomics and a comprehensive sequencing of exosomal miRNA
study using fasting and postprandial plasma samples from a subgroup of 14 females
from our SF cohort. Table 4 shows their clinical characteristics. We carefully matched
this subgroup by age and fat% from our total SF female cohort (N = 81). We performed
whole shotgun lipidomics in fasting and 3 h postprandial plasma. Using these lipidomics
results, we classified the 14 females having a high (H; mean 2.2) or low (L; mean 0.5)
ALR, and compared the differential signatures of lipid classes, subclasses and molecular
species. This strategy allowed identification and quantification of an immense quantity of
individual lipid species and classes, including the following: triglycerides, diglycerides,
monoglycerides, cholesterol and cholesteryl esters, oxysterols, acylcarnitines, acyl-CoAs,
phospholipids (including cardiolipin), lysophospholipids, eicosanoids, 4-hydroxy alkenals
and retinoic acid [37]. Shotgun lipidomics and miRNA differential expression profiles are
shown in Figures 2–5. The implications of these data are explained in the Section 4.

We compared F/P gene expression profiles of two key tissues (SKM and SQAT)
between MH and MUH individuals with or without AT dysfunction in 6 SF volunteers
(Table 5), chosen from our previous 14 SF adult females, matched by gender and fat%
(Table 4).

We assigned participants with a (L)ALR (mean 0.52) < 1 as the at-risk group (RG)
and participants with a (H)ALR (mean 1.98) > 1 as the control (low risk) group (CG)
(Table 5). The contrast linear combination of variables between the CG and RG are shown
in Table 6. Figures 6 and 9 report differentially expressed genes in SKM (twenty genes)
and AT (twenty genes) between the CG vs. RG. By comparing the magnitude of change vs.
the statistical significance (p-value) we were able to allegedly identify the most biologically
significant genes with large fold changes that are statistically significant. Figures 7 and 10
show heat maps with differences in gene expression from SKM and AT signatures from
the 20 genes identified for each tissue as shown in Figures 6 and 9. Figures 8 and 11 show
the enrichment analysis and interaction networks obtained through the FunRich database
analysis tool. The explanation of the associations and gene interactions is written in the
Section 4.
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Table 4. Demographics and clinical biochemistries in symptom-free adult volunteers (N = 14).

Demographic Characteristics Mean Values for 14 Females
(H) ALR (N = 9) SD (±) (L) ALR (N = 5) SD (±)

Adipo/Lep Ratio 2.2 1.1 0.5 0.4
Age (Yr) 38.5 11.8 32.6 13.0

% Fat Total 42.7 6.2 46.0 3.2
Weight (kg) 62.1 5.7 77.6 17.8

Waist Circumference (cm) 83.9 9.9 93.9 16.7
BMI (kg/m2) 26.8 3.1 32.8 7.8

Triglycerides (mg/dL) 119.8 42.2 145.0 60.1
HDL-Cholesterol (mg/dL) 41.4 9.6 47.8 9.4

Adiponectin (µg/mL) 24.9 15.5 7.0 2.8
Leptin (ng/mL) 11.1 3.9 21.0 11.3

Fasting Glucose (mg/dL) 87.0 6.9 86.2 8.4
Glucose 120′ (mg/dL) 121.2 21.8 107.0 7.0

Fasting Insulin (microU/mL) 7.1 4.2 17.3 9.5
Insulin 120′ (microU/mL) 59.5 42.4 101.7 42.2

Matsuda Index 6.6 4.1 2.9 1.3
HOMA-IR 1.5 0.9 3.7 2.0

PAI-1 (pg/mL) 42,867.5 31,186.8 56,408.4 57,940.0
IL-6 (pg/mL) 1.6 1.2 3.1 2.5

TNFa (pg/mL) 2.5 1.5 3.4 2.2
MCP-1 pg/mL 109.8 38.3 133.8 61.2

Table 5. Demographics and ALR measurements of each participant (N = 6).

Female ID
(N = 6) Gender Age % Fat Adiponectin

(µg/mL)
Leptin

(ng/mL)
Adipo/Lep

Ratio
MTY0003 F 49 34.5 18.37 7.41 2.48
MTY0007 F 38 36.2 12.13 5.42 2.24
MTY0006 F 33 50.3 23.73 11.50 2.06
MTY0014 F 45 49.9 16.96 15.03 1.13

Mean 41 42.7 17.80 9.84 1.98
SD (±) 7 8.5 4.77 4.29 0.59

MTY0009 F 20 43.2 8.46 8.93 0.95
MTY0010 F 35 47 3.12 35.27 0.09

Mean 28 45.1 5.79 22.10 0.52
SD (±) 10 2.7 3.78 18.62 0.61
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Table 6. Contrast linear combination of variables between the CG and RG (N = 6).

(H)ALR > 1 (L)ALR < 1
Variable Mean SD (±) SE Mean SD (±) SE Diff. SE Diff. p-Value

Waist Circumference (cm) 82.5 7.5 4.33 90 18.08 10.44 −7.5 11.3 0.543
BMI (kg/m2) 25.96 1.892 1.092 32.4 8.412 4.856 −6.43 4.978 0.265

% total fat 40.33 8.673 5.007 46.7 3.36 1.939 −6.36 5.37 0.301
Fat Mass kg 23.8 7.9 4.561 32.88 10.82 6.248 −9.08 7.736 0.305

Muscle Mass kg 34.28 1.718 0.991 37.18 11.05 6.384 −2.9 6.46 0.676
Triglycerides (mg/dL) 125.3 9.018 5.206 155.6 86.43 49.9 −30.3 50.17 0.578

Creatinin (mg/dL) 0.6 0.264 0.152 0.666 0.152 0.088 −0.06 0.176 0.724
Uric acid (mg/dL) 3.733 1.795 1.036 5.933 0.65 0.375 −2.2 1.102 0.116

BUN (mg/dL) 8 4 2.309 9.333 0.577 0.333 −1.33 2.333 0.598
Total Cholesterol (mg/dL) 162.3 80.22 46.31 156 11.13 6.429 6.333 46.76 0.898

HDL (mg/dL) 35 14.79 8.544 47.66 13.27 7.666 −12.6 11.47 0.331
LDL (mg/dL) 110 59.02 34.07 79 9.539 5.507 31 34.52 0.419

VLDL (mg/dL) 17.33 6.429 3.711 29.33 17 9.82 −12 10.49 0.316
Alt (U/L) 16.66 5.859 3.382 28.33 12.74 7.356 −11.6 8.096 0.223
Ast (U/L) 33.33 12.89 7.446 55.33 18.82 10.86 −22 13.17 0.17

Alk phos (U/L) 73.33 24.54 14.16 49.66 32.12 18.55 23.66 23.34 0.367
Adipo/lep Ratio 2.804 1.448 0.836 0.627 0.213 0.123 2.177 0.845 0.061 *
PAI-1 (pg/mL) 21,095 28,057 16,198 68,896 46,810 27,026 −4780 31,509 0.203

MCP-1 (pg/mL) 98.3 20.55 11.86 124.7 33.41 19.28 −26.4 22.64 0.307
IL-6 (pg/mL) 0.656 0.705 0.407 2.833 0.667 0.385 −2.17 0.56 0.017 **

TNF-a (pg/mL) 2.169 1.47 0.849 3.035 1.115 0.644 −0.86 1.065 0.461
hsCRP (mg/L) 0.058 0.029 0.017 0.304 0.165 0.095 −0.24 0.096 0.063 *
Matsuda Index 8.991 5.405 3.12 3.313 1.667 0.962 5.678 3.265 0.157

HOMA-IR 0.905 0.393 0.226 3.39 2.88 1.663 −2.48 1.678 0.212
AUC Glucose 350 61.55 35.53 310.9 2.155 1.244 39.08 35.56 0.333
AUC Insulin 134.8 61.86 35.71 282.8 87.22 50.36 −148 61.74 0.074 *
AUC GLP-1 304.8 52.32 30.21 470.3 236.1 136.3 −165 139.6 0.301

Statistically Significant p-Value: **; Marginally Significant p-value: *.
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Figure 6. Twenty logarithmic fold change (FC) > 2 and significant p-values for skeletal muscle (SKM) differentially expressed
genes (DEGs). Volcano plot of FC differences of SKM RNA expression between RG and CG. The vertical lines correspond to
FC > 2.
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interestingly, from the immune systems through B cells, CDK4, CDK8, monocytes and NK cells.
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the FunRich database analysis tool for gene annotation pertaining to transcript expression associations
in SKM tissue.

4. Discussion

In this study, we used a precision medicine screening approach anchored by measure-
ments of AT function and MH/MUH phenotypes among active, symptom-free (SF) adults
to identify integrative strategies for detection of early immunometabolic and cardiovascu-
lar risk. Our cohort was chosen with a careful exclusion criterion applied for participants
with acute illness, activity-limiting unexplained illness, absence of metabolic syndrome
criteria, hypertension, dyslipidemia, prevalent diabetes, known cardiovascular or chronic
lung disease, cancer or renal failure [16]. We decided to characterize our SF cohort with the
presence/absence of AT dysfunction through a novel biomarker, the adiponectin/leptin
ratio (ALR) [6,7,9].

As shown in Tables 1 and 2, we found that one group (N = 84) had a high (H)ALR
(6.7 ± 10.0) that translated to a healthy AT expansion and the second group (N = 40)
had a low (L)ALR (0.6 ± 0.3) that translated to an unhealthy AT expansion. We found
interesting differences between (H) vs. (L)ALR when we characterized AT dysfunction. The
anthropometric variables, the β-cell and insulin–glucose axis phenotypes, the adipose tissue
hormones, the lipid–lipoprotein and the proinflammatory phenotypes were significantly
altered in the (L)ALR group. These findings represent a solid indication that there is an
AT metabolic imbalance measured through the plasma ALR in our GEMM SF subjects.
However, we should keep in mind that males and females may exhibit differences in
adiponectin/leptin ratios and metabolic dysfunction, given that 81 participants were
females out of our 124 recruited SF subjects. Our findings also highlight the importance of
postprandial immunometabolism through measurements of dynamic phenotypes. After
careful screening of AT dysfunction through the ALR, we estimated the presence/absence
of MH and MUH risk among our SF GEMM subjects as shown in Figure 1 and Table 3.
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We were able to combine the MH/MUH phenotype with the AT dysfunction phenptype
in our SF cohort. In order to clasify our 124 SF subjects as metabolically healthy, we
used well-defined criteria: absence of abdominal obesity based on waist circumference,
absence of metabolic syndrome components, normal lipid values, normal fasting glucose
concentrations, normal C-reactive protein concentrations and absence of IR as evaluated
by the Matsuda index (Table 3) [4,32,38,39].

Most studies regarding metabolic health have focused their reports on individuals
with obesity. They have designated that metabolically healthy obesity (MHO) is applied
to those who meet the BMI cutoff point of ≥30 kg/m2, but do not have other major
cardiovascular risk factors and who are not at higher cardiovascular risk than nonobese
individuals [40]. One major weakness with respect to this phenotype is that perhaps it
solely represents a subgroup of obese subjects with just a lower quantity of metabolic risk
than expected for their degree of BMI [41]. Moreover, there are subsets of individuals
who are considered “normal/healthy” weight, categorized by a low BMI, but with an
increased metabolic/cardiovascular risk. This subset, characterized by elevated insulin
levels, elevated triglyceride levels and insulin resistance are much harder to characterize
than the MHO group and are predisposed to subsequent development of T2DM and
coronary artery disease [42–44]. Despite these controversies, we decided to estimate the
presence/absence of metabolic health (MH/MUH) among the SF GEMM subjects according
to their ALR cut-off points characterizing AT dysfunction. The analysis of the phenotypes
associated with MH/MUH are combined for males and females due to their similarity.

Three subgroups of SF individuals were identified: one group with only one metabolic
risk phenotype and the absence of IR and LGCSI with a high (H) mean ALR of 9.5 ± 13.0,
and a second and third group with altered fasting glucose levels (>100 mg/dL), low HDL-C
values, high triglyceride levels, visceral obesity and isulin resistance with a mean ALR of
4.0 ± 4.5 and 0.6 ± 0.3, respectively (Table 3, Figure 1). Twenty-eight individuals fulfilled
the criteria of MH with the presence of only one metabolic risk phenotype. We identified
a mid (M) “gray zone” where a second group of GEMM SF individuals (N = 43) had a
mean ALR of 4.0 ± 4.5 and presented between 2 to 7 metabolic risk phenotypes. For the
third group (N = 40) with a mean (L)ALR of 0.6 ± 0.3 the participants presented between
2–8 metabolic risk factors. Table 3 and Figure 1 demonstrate these data by presenting the
risk criteria cut-offs, the number of cardiometabolic risk phenotypes present in everyone
and the percentage of these risk phenotypes within each of the three groups with AT
dysfunction. Compared to the group with a (H)ALR, subjects from the (M) and (L)ALR
groups had a much larger and more significant prevalence of IR and prediabetes.

When comparing the three different groups for the presence of AT dysfunction through
a (H), (M) and (L)ALR, a clear picture emerges. There is a gradual and ascendant increase
of the prevalence of their dysglycemic state, their IR state, increased triglycerides, their
proinflammatory state and prediabetic state that can be easily correlated with their AT
function. Through the biology and molecular actions of adiponectin and leptin, the ALR
seems to offer a means to translate clinical biochemistry features into cellular steps for the
transition between a healthy and unhealthy AT expansion in SF individuals. We could
speculate that the (H)ALR group in our GEMM SF cohort represents a mild physiologic
hypoxia during early healthy AT expansion, appropriate signaling for sufficient angiogene-
sis and small initial inflammatory cell infiltration. This induces an organized extracellular
matrix (ECM) remodeling process for adequate expansion, involving functional adipocytes
and the presence of predominantly M2 macrophages without fibrosis (Graphical Abstract).

In the presence of an excessive calorie-dense, palatable macronutrient intake there is
adipocyte growth, which ultimately changes the healthy AT expansion through a progres-
sive increase in ECM component synthesis, leading to a discrete and polarized macrophage
phenotypic conversion, which characterizes the (M)ALR group. Chronic high caloric intake
over time results in adipocyte hypertrophy, hypoxia and impaired ECM synthesis. The
deleterious inflammatory response is fully triggered, predominantly by the presence of
M1-polarized macrophages secreting a vast array of proinflammatory cytokines (mainly
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IL-6 and TNF-α). Due to severe hypoxia, a vicious cycle of persistent injury signaling and
resultant impaired angiogenesis limits oxygen supply, subsequently triggering CLGSCI
and massive proinflammatory macrophage infiltration, which characterizes the (L)ALR
group (Graphical Abstract).

This scenario sets the landscape for excessive fibrosis, promoting significant AT hyper-
trophy, triggering the associated systemic immunometabolic dysfunction and leading to
deleterious metabolic consequences such as T2DM, impaired angiogenesis, systemic inflam-
mation, IR, endothelial dysfunction, altered lipid–lipoprotein metabolism and atheroscle-
rosis [45,46] This same scenario could also be applicable to SF individuals with a (L)ALR
independent of their AT accumulation and BMI measurements. It seems clear that AT
dysfunction as a proxy for AT unhealthy expansion, measured through the ALR, is the
common denominator that dictates early transition to immunometabolic impairments
such as LGCSI, IR, postprandial proinflammatory response leading to dysglycemic states,
prediabetes, lipid–lipoprotein abnormalities, and endothelial dysfunction phenotypes
(Graphical Abstract). It appears that these phenotypes pertain to an approach that has not
been exploited in full within the routine clinical setting [47,48]. These phenotypes are also
considered CVD risk factors of immunometabolic origin [15], termed as nontraditional
CVD risk factors (Tables 1 and 2) [48,49]. It is also worth mentioning that this scenario may
have individualized permissive factors and a strong genetic background to affect different
individuals with different thresholds of fat accumulation. This has been implied in animal
models where scientists have shown that there are potential differences in lipolysis by
demonstrating that leptin-induced lipolysis may be regulated by nitric oxide (NO) [50].

As described in our results, we used heat maps to provide a descriptive representa-
tion of the postprandial comprehensive sequencing of miRNA in F/P plasma exosomal
samples and a shotgun lipidomics dynamic process at 180′ to compare differences between
female participants (N = 14) with (H) and (L)ALR (Table 4). We are only presenting the
postprandial results 3 h after food ingestion, representing the peak of digestion. The
lipidomic and miRNA heat maps show a fold increase of molecular lipid species and
miRNA differential expression at time point 180′ for (L)ALR individuals as compared to
(H)ALR ones (Figures 2 and 4). Our preliminary results interestingly showed that the “hot
brown” highest values in shotgun lipidomics and miRNA differential expression were
found in participant 16 with a (L)ALR, and participant 21 with a (H)ALR. We performed
volcano plots that enabled identification of lipid signatures with large fold changes, with
the most biologically significant lipid species differentially expressed, also identifying
miRNAs signatures with a trend for downregulation (Figures 3 and 5). Figure 3 shows the
specific classes of lipids differentially expressed between the (H) and (L)ALR at 180 min.
These classes were PI [51], AC [52], Cer [53] and TAG [54]. The miRNA identified were
hsa-miR-335-3p [51], hsa-miR-483-5p [52], hsa-miR-505-3p [53] and hsa-miR-584-5p [54]
(Figure 5).

Female participants 16 and 21 seemed to have had the highest lipidomics and miRNA
activities and expression profiles (Figures 2 and 4). Participant 16 is a symptom-free
metabolically unhealthy 35 year old female with AT dysfunction (ALR = 0.20), insulin resis-
tance (Matsuda index of 2.7, HOMA-IR of 4.06), chronic subclinical inflammation (hsCRP
of 51.8 mg/L) and HDL-C of 45 mg/dL, with a high risk of developing T2DM. Partici-
pant 21 is a symptom-free metabolically unhealthy 30 year old female with an ALR = 1.41,
a Matsuda index of 2.6, fasting glucose levels of 101 mg/dL and 2 h-postprandial glucose
levels of 155 mg/dL and fasting triglycerides of 166 mg/dL, which translates to a strong
predisposition of developing a dysglycemic state [33]. Although our sample is too small
for rigorous conclusions, these results illustrate examples of how we can characterize
our future full dataset to screen plasma circulating molecular biomarkers and identify
early signatures of risk for immunometabolic and cardiovascular disease and achieve a
translational (from bench to bedside) and personalized medicine approach.

Finally, we obtained SKM and SQAT biopsies from six SF volunteers chosen from
our previous fourteen SF adult females to perform whole-transcriptome analysis with
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total RNA sequencing (RNA-Seq). We obtained the F/P SKM (vastus lateralis) and SQAT
biopsies from the thigh of each SF participant. We obtained our subcutaneous (SQ) tissue
biopsy from the thigh instead of the abdominal SQ depot, and it has been documented that
adipocyte formation is higher in the gluteofemoral compared to the abdominal SQ adipose
depot when in vivo adipogenesis is directly measured [55,56]. In addition, thigh SQAT
mass (but not abdominal SQAT mass) is weakly associated with a lower prevalence of
metabolic syndrome and cardiometabolic risk [57]. Support for these findings is provided
by studies showing that the relative release of palmitoleate, an insulin-sensitizing lipokine,
is markedly higher from SQ gluteofemoral AT compared with SQ abdominal AT. Further-
more, by directly measuring adipogenesis, important information has been documented
regarding preadipocyte and adipocyte formation being higher in the femoral compared to
the abdominal SQ adipose depot [58–60]. Although this study comprises a small sample
size (N = 6), the purpose was to obtain proof of concept data, which we performed by
repeated measurements of key immunometabolic phenotypes that are related to body
composition: adipose tissue biology, the insulin–glucose axis proinflammatory biomarkers
and postprandial metabolism. This is a subset of only six female participants matched
by gender and percentage of body fat, independent of BMI, weight or age but divided
by (H) vs. (L)ALR; therefore, a weakness of the analysis is that perhaps a power analysis
should have been done instead given the small sample size and the number of phenotypes
compared between the (H) and (L)ALR groups. Although our results showed several not
significant p values and some phenotypes, specifically BMI, showed no differences between
the compared groups, we speculate that with a larger sample size, differences could have
been detected.

The contrast of the linear combination of phenotypes between the mean (H) and
(L)ALR groups showed that the ALR, IL-6, hsCRP and the AUC for insulin were signifi-
cantly higher in the L(ALR) group, perhaps indicating the presence of a higher proinflam-
matory activity in the (L)ALR group (Table 6). We assigned participants with a (L)ALR
(N = 2, mean 0.52, Table 5) < 1 as the at-risk group (RG) and participants with a (H)ALR
(N = 4, mean 1.98, Table 5) > 1 as the control group (CG). The logarithmic fold change
(FC) for RNA was calculated for 0′ and 180′ (F/P). We also contrasted the two groups
(RG vs. CG) using the natural logarithmic FC to identify genes ranked by unadjusted
p-values to obtain a probability measurement. Figure 6 shows that the three most relevant
genes differentially expressed in SKM were CCT6A [61,62], PMP22 [63] and TSC22D1 [64].
Interestingly, Figure 7 shows that the hottest activity detected in the heatmap for SKM gene
expression was CCT6A for adult pathways involving the immune system (B cells, CDK4,
CDK8, monocytes and NK cells). Figure 8 shows that TSC22D1 was the key centered gene
associating a vast array of interactive pathways obtained through FunRich annotations for
SKM transcript expression.

Figure 9 shows that the two most relevant genes differentially expressed in AT were
WNT5A [65] and FNDC1 [66,67]. Figure 10 demonstrates that the MCM4 gene, involved
with adult pathways involving the immune system (B cells, CDK4, CDK8, monocytes
and NK cells), had the hottest activity detected in the heatmap for SQAT gene expression.
Figure 11 shows that MCM4 was the key centered gene associating a vast array of interactive
pathways obtained through FunRich annotations for SQAT transcript expression [68].
Overall, Figures 6–11 demonstrate a molecular workflow for bioinformatics analysis and
provide a stepwise strategy to translate key transcriptomic/lipidomic expression into
biological pathways and gene–gene expression interactions and associations of SKM and
AT in the fasting and postprandial state.
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Figure 11. Graphical representation of enrichment analysis and interaction networks obtained
through the FunRich database analysis tool for gene annotation pertaining to transcript expression
associations in adipose tissue.

5. Conclusions

Our study characterized F/P nonconventional biomarkers in blood and directly mea-
sured genomic and molecular pathways of F/P AT inflammation and other features of
dysfunctional AT. We combined integrated, clinical and multiOMIC profiles from blood,
AT and SKM, three tissues key to immunometabolic biology, and outlined novel methods
and procedures in SF adults to identify biochemical pathways and potential regulatory
networks. However, our data are cross-sectional, not longitudinal, therefore, it remains to
be seen that the identification of early biomarkers are truly associated with risk factors with
future abnormal metabolic symptoms. Nevertheless, by characterizing some of the earliest
biomarkers of immunometabolic dysregulation, we can identify which subjects may have
an unhealthy metabolism, therefore identifying risk factors that lead to the development of
T2DM and CVD.
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