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1 | INTRODUCTION

Independence between events and disjoint events are a
couple of difficult concepts for students to understand
and distinguish. Indeed, even when their respective defi-
nitions and early illustrations are straightforward
enough, it is not difficult to find examples where pupils
take one for the other.

This article is about faulty reasoning in probability,
and how to use it to learn about three important results
in this discipline. We survey two classic examples to
exhibit the use of the multiplication rule (Reference [1],
section 1.4), and when the Principle of inclusion and
exclusion (Reference [2], theorem 3.8) can be simplified
to a simple sum without substractions. One of the

| Eliud Silva' | Enrique Lemus-Rodriguez®

We take advantage of a combinatorial misconception and the famous paradox
of the Chevalier de Méré to present the multiplication rule for independent
events; the principle of inclusion and exclusion in the presence of disjoint
events; the median of a discrete-type random variable, and a confidence inter-
val for a large sample. Moreover, we pay tribute to our original bibliographic
sources by providing two computational tools to facilitate the students’ insights

confidence intervals, median, multiplication rule, principle of inclusion and exclusion

paradox, posed by Joseph Bertrand in Reference [3], p. 2
(see also Reference [4]). In this puzzle, there are three
boxes: a box containing two gold coins, a box with two
silver coins; and a box with one of each. After randomly
choosing a box and withdrawing one coin at random that
turns out to be gold, the question is what is the probabil-
ity that the other coin is gold as well. The most celebrated
puzzle related to this example is, of course, Monty Hall's
problem (see, References [5], section 1.5, [6], p. 104; epi-
sode 177 of 2011's season of Mythbusters and Robert
Luketic's film 21); and a never-ending list of derivations
that includes (but is not restricted to) Ferguson's N-door
generalization of the original problem [7], Martin Gard-
ner's Three Prisoners problem [8,9] and a quantum ver-
sion of the paradox that illustrates the relation between
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The second one is a small part of a renowned collabora-
tion between two of the greatest contributors to probabil-
ity theory, which also serves the purpose of motivating
the use of the median as a measure of central tendency.
We are aware that teaching the median of a discrete ran-
dom variable to students of nine to 19 years old is not
customary. However, in our involvement as instructors
in a University with an Actuarial Program, the archetype
we provide is of great help when it comes to counting
filed claims for the purpose of insurance (see Reference
[12], section 17.5.3), or to find measures of central ten-
dency for non-scalar random variables. Moreover, to aid
our students’ understanding of the amount of spare time
needed to obtain some insight into results as (for
instance) the Law of Large Numbers and the Central
Limit Theorem, we have coded a couple of computational
tools. We confess how hard it was not to imagine being
able to time-travel all the way back to the 17th-century to
bring our tools to Pascal, Fermat, and the Chevalier de
Meéré with the sincere expectation that the result differed
from the one obtained by the protagonist referred to in
1979's tale Newton's gift (this work originally appeared in
Reference [13] and was republished in Reference [14]
more recently).

The following section is devoted to present the princi-
ple of inclusion and exclusion by means of a modification
of an illustration presented in Reference [15], p. 69. We
wrap that section by introducing the multiplication rule.
Section 3 presents the well-known paradox of the Cheva-
lier de Méré in the spirit of References [16], pp. 248 to
250, [17], pp- 28,29 and 44,45 and [5], chapters 6 and 7.3,
and pays a homage to our original sources by updating
Pascal and Fermat's approach by means of two computa-
tional tools specially coded for the publication of this
paper. We present computerized versions of the Cheva-
lier's gambles in Section 4 and take advantage of them to
include a discussion on confidence intervals for the differ-
ence in proportions. Section 5 presents our conclusions.

2 | ASCERTAIN AS 459.48%!

We start this section with a simplification of the example

before. Finally, we divide the number of ways of choosing
all six members of the committee among the 27 persons.
This results in the following:

HE)E)E)
(¢)

The problem is that this approach does not return a
number in the interval [0, 1], so, it clearly cannot repre-
sent a probability. As a matter of fact, our reasoning is
defective because the product in the numerator assumes
a population of size 7 + 8 + 12 + 24 = 51, which is not
the case, for there are only 27 staff members.

The following result will help us to give a proper
answer to the question posed in the former example
(A proof can be found, for instance, in Reference [2], the-
orem 3.8).

=4.5948.

Theorem 1. Principle of inclusion and exclu-
sion. Let E;, E,, ..., E,, be events of the sample

space. Then
n n n n
P(_U E,-) =Y P(E)->_ > P(ENE)
=1 i1 i1 j—it1
n n n
+3°3 > P(ENENE) —----
i1 jmi1k=j+1

We use Theorem 1 to find the answer to the question
posed by the example in this section. Define the events

« E; = {There is no principal researcher among the com-
mittee's ranks},

« E; = {There are no associate professors among the
committee's ranks},

« E; = {There are no instructors among the committee’s
ranks}.

The event E; U E, U E; stands for the case where at
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P[(ElLJEzUE;)C] —1-P(E,UE,UEs). (1)

Now, Theorem 1 yields

—P(E\NE,) — P(E; NE3) — P(E;NE3)
+P(E\NE,NE3).

Each of these probabilities can be easily computed.
20
For instance, since there are ( 6 ) ways to make a com-

without researcher, then

()

P(E,) =(—). It is also straightforward that, since there

mittee any principal

27
6

are ( 6 ) ways to form a committee without principal

(s)
researcher, nor associate professors, P(E, NE;) = (267)-

6
Finally, P(E; N E, N E3) = 0, due to the fact that the event
E, N E; N E;is void. Then

(20) N (19) N (15)
6 6 6
P(EyUE,UE3) = (27)
6
12 N 8 N 7
~\6 6 6
2’?)
6
69,938
=29, 010—0.23627‘
Plugging this into (1), gives us

that P|(E, UE, UE;)€| =0.76373.

The problem studied in this section is tricky and leads
to an absurd result because it deals with chances of the
unions of non-disjoint events. Theorem 1 gives us an

Definition 1. Let E and F be events in a
sample space, and P(F) > 0. We denote the
conditional probability of E given F by P(E|F)
and use it to define the simultaneous occur-
rence of E and F by means of the multiplica-
tion rule:

P(ENF) = P(F)P(E|F). (2)

The multiplication rule yields a way to compute the
probability of the simultaneous occurrence of two events.
Actually, as it is well-known, we say that the two events
E and F are independent to each other (or simply indepen-
dent) when P(E|F) = P(E), in which case, (2) reduces to

P(ENF)=P(F)P(E). (3)

We point out at the fact that, if instead of being inde-
pendent, E and F were disjoint (as in the example in this
section), we would end up with

P(ENF)=P(0) =0,

which would match (2) only if P(E|F) = 0. Note that this
holds when E = (). This means, in particular, that () is
both disjoint and independent of every set.

3 | DES PENSEES RATEES

Once upon a time of Swords and Musketeers, in France,
a well-educated fellow, of scarce means and acute mind,
fond of discussion, and welcome in the circles of the
French nobility, had a troubling matter weighing on his
heart. A matter of gambling and earnings.

Antoine Gombaud, the Chevalier de Méré, as he was
known to his friends [19], claimed that after much prac-
tice, experience had shown him that gambling on at least
one six in at most four rolls of a fair die was a
winning bet.

Figure 1 delves into the “much practice” business.
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Please select the number of Dice (m):

1

Select the number of Rolls (n):
' 0
B [t I I [ I

1" 2 e}l 4 81 & m 8

Select the number of Simulations (s):

1

FIGURE 1
fair die

The Chevalier de Méré also argued that if getting a
six was replaced by getting a double six, he would need
only 6 x 4 = 24 rolls of two fair dice to restore the
advantage. He believed that, since the new event of our
interest is six times more difficult to come by than the
one six in one die roll, six times more opportunities
would re-establish his odds. Indeed, the theory said that,
as the chance of a double six in a toss of a pair of dice is
36 then the chance of winning in this new game should
be 24 x 3'6 :% So, these two games should be won with
equal chance. Figure 2 shows what happens for ten thou-
sand simulations of 24 rolls of two dice.

Is this a proof that mathematics is inconsistent? How
is it possible that such clean and straightforward reason-
ing by proportionality fails?

Fortunately this was a well-connected chap, somehow
in talking terms with the famous and wise M. Blaise Pas-
cal. But Pascal, being moderately sociable, was a practi-
tioner of the Art of Epistles and wrote a letter about this
(and other questions posed by the Chevalier) to a singular
acquaintance: a lawyer, partial of numerical conun-
drums, Pierre Fermat.

In the epistolary exchange that followed, numbers

2e+05

Se+05
J

482430

4e+05
1

Je+05

1e+05

Oe+00

win loss

A million experiments strongly suggest that it is favorable to bet on an outcome of at least one six in four rolls of a single

That would entail four consecutive failures in the first
game discussed. Each failure is a 5/6 probability event.
Failures are independent. With these ideas in mind, we
use a generalized version of the multiplication rule (3) to
see that the probability of losing, P(Loss), equals the prob-
ability of failing four times in a row, that is:

P(LOSS) = P(Fl ﬂFg ﬁF; ﬂF4)
— P(Fy)-P(F;)-P(F3) - P(Fs)

Consequently,

P(Win)=1—P(Loss) =1— (2)4 ~5L.77%.  (5)

The reader may easily conclude that this bet is indeed
favorable to the Chevalier, for this probability is
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FIGURE 2 We simulated 24 rolls of two fair dice ten thousand times. One might have thought that betting on obtaining a double six
would have a probability greater than a half. But applying this strategy yields 5130 losses and only 4870 wins

Please select the number of Dice (m):

2

Select the number of Rolls (n):

i (25

FIGURE 3 The probability of winning is greater than 50%

It is clear from (6) that winning in (at most)
24 attempts has a probability of less than 50%, and there-
fore the idea of asking only for 24 rolls of two dice should
be improved. As a matter of fact, if we concede one more
attempt to the Chevalier, the new bet is favorable (by a
minute margin) see Figure 3:

100

o 100

P(loss)

P(win): 0.50553 . P(loss): 0.49447

rolls to six, it is certain that you will obtain the one six,
for 6 x ¢=1. Moreover, according to his logic, if you

rolled seven times, it turns out that the probability of

winning if of 7 > 1 (as in the example in Section 2)!
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be confident that you actually win the first gamble with
greater chance than the second would have taken a very
large number of plays of these two games. There were some
people here with serious leisure on their hands!

We devote this section to showing computational
procedures to find the least number of rolls that the
Chevalier needs to demand so that his probability of
winning is barely superior to 50%. We hope our tools
will enable people of leisure to spend less time crunch-
ing data, and more doing math.

4.1 | Letusroll the dice!

The following figure represents the experience the Che-
valier had when he designed his gambling plan. With this
in mind, all he had to do was to repeat these steps a few
(thousand) times to see if his choices for the number of
dice to roll and the number of rolls that his fellows
allowed him were favorable or not.

[start]
n «— number of dice
t — number of rolls

-9

N
— =0 [
Yes

Roll n dice

No
k « k +1|=—< nsixes?

This is the schema we followed to produce Figures 1
and 2. Indeed, in Figure 1, we chose n = 1, t = 4, and
repeated the steps a million times; while, for Figure 2, we
used n = 2 and t = 24, but we repeated the simulation
ten thousand times.

We invite the interested reader to see an implementa-
tion of the steps we just displayed in R v.4.2.1 in https://
github.com/DonDisparates/chevalier [21].

The approach used by Pascal and Fermat can be
used to generalize the two games discussed to ¢ rolls
of n six-sided dice. This is what we did to produce
Figure 3 by means of the code we just quoted.
Indeed, let p be the probability that you obtain at
least one roll with all sixes. Then, the probability that
none of the n dice gives the desired outcome in a single
roll is 1—g. Therefore, an analogous argument to

(4) yields

In other words,

p=l—(1—6ln)t. (7)

With this in mind, we generate the following table to
help our friend design more games, which are slightly
favorable to the gambler.

n t p

3 0.4213
1 4 0.5177
2 24 0.4914
2 25 0.5055
3 149 0.4991
3 150 0.5015
4 897 0.49962
4 898 0.50001
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n were appropriate, he had to partake in a large number
of gambles. (After all, he was not precisely keen in mat-
ters of disjoint, nor independent events.)

In general, when we make an estimation of a num-
ber (in this case, the probability of winning the wager),
we do not go as far as to just give our estimate. What
we do, is that we talk about a confidence interval where
that number should be. That is, a range of numbers we
are pretty sure the number must be contained
in. These intervals depend on two things: the variation
of the outcomes of the experiment, and the size of the
sample. A measure of the former is the variance, and
the latter is just the number of times the Chevalier
gambled. As it is to be expected, the more he played
the games, the more he could be certain of the
outcome.

There are several ways to give confidence intervals.
The most common is to use estimations that use the
so-called Normal distribution and the Central Limit
Theorem (Reference [2], pp. 330-334). If we compute
the probability of winning the wager as the proportion
p of the times we win to the number of times we gamble,
N, it turns out that we can be 95.4% confident that the
actual probability of winning lies in the interval

(;;._z /ﬁ(lgﬁ),l—) 5 /@). @®)

That is P (ﬁ —24/PUP) < p <+ 2, xf’--(‘;?)) =95.4%.
Example:

a. From Figure 1, we know that, after N = 1, 000, 000 tri-
als, the Chevalier de Méré found that the probability
he won the one-die bet with four attempts was close to
p= % =51.75% (according to (5), the actual
value is 51.77%). The 95.4%-confidence interval, in this
case, is (51.66%, 51.86%). This is an interval of
size 0.199%.

b. Figure 2 states that, after betting N = 10, 000 times to
at least a double six on 24 rolls of two dice, the Cheva-
lier de Méré obtained an estimate of the probability of

winning of p= %% =48.7% (by (6), we know that

N =1, 000, 000 times, to gamble only % =10, 000 times,
you should expect to obtain a confidence interval
V100 =10 times larger. In any case, the sample size
needed by the Chevalier de Méré to be confident that he
was more likely to win with the one-die game in four rolls
than the two-dice game with 24 rolls is gargantuan. The
bottom line here is as follows: he was most definitely a
true person of leisure. However, we must emphasize the
fact that the Chevalier and his friends did not have access
to the tools we do (eg, confidence intervals or computer
simulation). Indeed, there is a distinction between what
might constitute evidence for different game probabilities
for the Gombaud, Pascal, and Fermat, and what might
constitute evidence for different game probabilities for us.

43 | Spread cheating

We will use a spreadsheet program to find the number of
rolls in a two-dice bet that turns the game barely favor-
able to the gambler. That is, setting n = 2, we will solve
(7) for t so that p is just a bit larger than 50%.

We start by adding labels to the headers. The leftmost
column represents the number of rolls; the second, the
probability of losing when the Chevalier rolls two dice;
and the rightmost column stands for the complement to
one, that is, the probability of winning.

Probability of losing in a roll of two dice.

SUMA - x v K =1-1/6*1/6
A B c |
P(lose with
rolls [ ; P(win)
1 two dice)
2 [ 1|:1-1;6*1f6 |
=

Probability of winning when rolling two dice once.

SUMA v X v kK =1-B2
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SUMA v x v =35/36%B2
A B C
P(lose with _
rolls _ P{win)
1 two dice)
2 1| 0.9722222]| 0.0277778
3 | 2|=35/36*82]

Probability of winning in two rolls of two dice.

SUMA - x v K =1-B3
A B C
P(lose with _
rolls , Pwin)
two dice)
7 1 09722222 0.0277778
3 | 2| 0.945216/=1-83] |

Drag the formula downwards until P(Win) > 50.

A3 i f =1+A2
A B & [
P(lose with
rolls ) P(win)
1 two dice)
2 109722222 0.0277778
3 | 2 0945216  0.0547844
4 E
5
6

The number of rolls that make the game barely favor-
able to the gambler is 25, not

C26 b b= =1-826
A B € D
P(lose with
rolls ( . P(win)
two dice)

As the reader surely noticed, t, the number of rolls
referred to in this section is no other than the median of
the random variable of rolls of » six-sided dice.

5 | FINAL REMARKS

This work presents two failed threads of thought to intro-
duce the idea of independence; the principle of inclusion
and exclusion; and the notion of a confidence interval.
Our first example is combinatorial, and the second one is
a classic paradox, which has been well-documented along
the past three centuries. Each deals with the chance of a
union of non-disjoint events.

We also take advantage of the paradox of the Cheva-
lier de Méré to present two computational tools. One of
them allows the student to play with the number of six-
sided dice they will use, the number of rolls, and the
number of times the Chevalier will bet so as to compute
both the theoretical and empirical probability of winning
the wager. The second tool is an implementation on a
spreadsheet of the computations performed by Pascal and
Fermat to help the Chevalier to find the median of the
number of rolls needed to win his bets.

We hope you enjoy the material just as much as we
enjoyed preparing it.
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Announcement of Special Issue 2023 in Teaching Statistics

1 | RE-THINKING LEARNERS’
REASONING WITH NON-
TRADITIONAL DATA

This Special Issue will showcase work that was presented
at SRTL-12. Many ubiquitous forms of data do not clearly
fit the sample-population assumptions that underpin the
statistical reasoning that has been the focus of much in
statistical education. For example, data collected in real
time (GPS, live traffic, tweets), image-based (photo-
graphs, drawings, facial recognition), semi-structured
(scraped from social media posts), repurposed (school
testing data to estimate housing prices) and big data

data as well as how they model, analyze and make pre-
dictions from these forms of data. This special issue
focuses on empirical studies that investigate or nurture
learners’ understanding and reasoning with non-tradi-
tional, messy and/or complex data and models. Papers
will focus on practical advice and implications for good
practice in teaching statistics using non-traditional data.

This special issue will appear in mid-2023.
Guest Editors:

Jennifer Noll, TERC (USA).
Sibel Kazak, Pamukkale University (Turkey).
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(open access internet data, civic databases) are all exam-
ples of non-traditional data.

While non-traditional forms of data have been with
us for some time, the digital age has led to a pervasive
culture of data in all aspects of life, including those of our
students. Widespread availability and access to myriad of
non-conventional, repurposed, massive or messy data sets
necessitate broadening educational knowledge to better
understand how learners make sense of and interrogate
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