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The following link leads to Shiny app, which automates the controlled 
smoothing methodology presented in the book.

bit.ly/TSSPLSsoftware24

After clicking the link, you will be redirected to the posit web page, where 
you will need to complete the registration process to access the shiny. You 
can also use the following QR Code to get to the app. 
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Prologue

As the research journey progresses, tools and methodologies emerge that 
revolutionize how we approach and understand real-world issues. This 
book, through its range of non-parametric proposals, testifies to a pro-
gressive research development guided by Dr. Victor Guerrero’s strong 
leadership. It embodies ideas that are increasingly adapted to the needs of 
analysts and users of statistics. 

Since 2007, the research presented here has evolved, adopting and 
evolving innovative and complementary methodological approaches. 
Nevertheless, what distinguishes this compendium is its accessibility. 
Although deeply rooted in rigorous research, its approach is accessible 
to doctoral students and those seeking a master’s degree, researchers, and 
analysts. Thus, it is presented as an anteroom, an open invitation for those 
who wish to dive deeper into time series smoothing issues.

One of the fundamental pillars of the work is the controlled univari-
ate smoothing technique, which is exploratory and allows estimations 
with specificities for the estimation of trends with different orders of 
differentiation, such as “d=1” and “d=2”, and variants “with constant” and 
“without constant”. The reader will discover how these techniques arise, 
among other things, from the evaluation of business cycles. The authors 
present detailed and valuable methods for determining crucial parameters 
such as the ‘lambda’, and the impact this has on research. 

A distinctive element is the approach to trend estimation. Although 
there are problems at the extremes or “tails” in previous applications of the 
proposals, this book proposes solutions to correct these deviations. More-
over, unlike other traditional techniques, such as X12-ARIMA, this book 
provides tools to generate estimation intervals, giving the analyst a broader 
and more nuanced perspective of their respective data and estimates. 
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The book is also characterized by its intuitive part, by proposing 
a computational tool programmed in free statistical software called R. 
Some of the benefits of this tool include, for example, allowing analysts 
to manipulate various parameters such as the order of differentiation, 
the smoothing parameter, the width of the estimation intervals in real-
time. By accessing this online platform, the user can load time series and 
experiment with different degrees of smoothing, visualizing the changes 
immediately and gaining a deeper understanding of how these parameters 
modify the results. In addition, a value added to what is proposed in the 
book is that the techniques do not impose rigid distribution assump-
tions to estimate trends, thus offering a remarkable flexibility, especially 
in data series of less than 500 observations. Through this work, the ideas 
embodied in the time series smoothing problem proposed by Guerrero 
(2007) are generalized. In this way, the book offers innovative and simple 
ways to calculate trends, allowing the analyst to objectively choose the 
desired smoothness to make possible comparisons between trends with 
the same smoothness. 

In conclusion, more than a simple collection of proposals, this book 
is a window to the future of research. It invites the reader to enter, ques-
tion, and continue exploring, always with a reliable tool in hand and 
the contributions of Dr. Victor Guerrero as a guide, accompanied by his 
notable collaborators.

María Rosa Nieto Delfin 
Research Professor, 

School of Business and Economics
University Anáhuac, Mexico
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Chapter 1
Introduction 

There is a wide agreement among specialists that a time series is made up 
of different components and therefore that it can be decomposed. A con-
ventional decomposition considers that the observed series contains two 
elements: trend (T) and cycles (C). Although there are proposals where the 
series is composed of additional elements such as seasonality and irregular 
components. There are several possible reasons why a researcher might 
want to decompose a series. One of them may be that the researcher is 
interested in analyzing the cyclical behavior of the series. Or, perhaps, 
she wants to study the series’ long-term pattern so that she can do some 
forecasting. Another possible motive is when the time series contains too 
much noise that does not allow a clear analysis of the series. In this case, an 
estimation of the series’ trend or cyclical behavior would help the analyst. 

In general, any set of ordered and equally spaced observations (in 
time, age, or any other dimension) could be filtered (or smoothed) to 
see their underlying trend more clearly. Thus, data smoothing and trend 
estimation are usually related when analyzing ordered and equally spaced 
data. Throughout this book we use the term “Time Series” even when 
the ordering does not correspond to time. 

There are different theories and methodologies to decompose a time 
series. The large majority are linear models that convert one time series 
into another. The literature uses different names to describe this process of 
transformation: to decompose, to filter, to smooth. All these terms, how-
ever, describe the process by which the original time series is decomposed 
into its trend and cyclical components. Throughout this book, a filter is 
defined by any operation on the observed series {yt} that yields another 
series, which in the present case will be the estimated trend {ĝt}. In other 
words, a filtering procedure consists of applying a filter L on the observed 
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data yt, such that ĝt = L yt . Since gt is a random variable, it would be prefer-
able to call ĝt predictor rather than estimator. Nevertheless, we will employ 
the usual terminology that uses estimation instead of prediction. 

The predominant view in the literature considers the trend as the 
component of the evolution of a persistent series that cannot be attributed 
to observable factors. The univariate approaches reviewed in the literature 
assume that the trend is either a deterministic or a random function of 
time. When analyzing trends, it is common to use an unobserved com-
ponent model representation. This assumes that the observed time series 
can be expressed as a signal-plus-noise model, that is, 

yt = gt + vt (1.1)

where for each value of t Є[1,N], {gt} represents the unobserved trend or 
signal, which may be a random or deterministic function of time, while 
{vt} denotes the unobserved stationary noise (where a stationary series is 
such that its mean, variance and covariance between two observations, are 
constant along time) of the observed value of the series, {yt}. 

This decomposition has different meanings in different areas of 
knowledge. In Experimental sciences, for example, vt is usually inter-
preted as a pure measurement error, so that the observed series {yt}, is 
assumed to be the sum of the error term plus a signal {gt}. In Actuarial 
sciences, on the other hand, a researcher may use graduation to make the 
observed data smoother, but she must ensure that the graduated values 
maintain some degree of closeness to the original data. One of the most 
critical tasks in Actuarial sciences is to describe the population’s actual but 
unknown mortality pattern. 

In Economics, if {yt} represents Gross National Product (GNP), then 
{vt} is often interpreted as the stationary stochastic cycle or the cyclical 
component of GNP, while {gt} is the output’s trend. The Trend-Cycle 
decomposition stems from the idea that total output is the sum of a 
long-term growth and some stationary, temporary fluctuations around 
its long-term trend. In Finance, the Efficient Market Hypothesis (EMH) 
suggests that financial asset prices reflect all available information, mak-
ing future returns unpredictable. However, since the 1990s, many studies 
have challenged this theory. One argument is that risk premiums vary 
over time and depend on the business cycle (Cochrane, 2001). This means 
that the returns of financial assets are related to slow-moving economic 
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variables that exhibit cyclical patterns during the business cycle (Bruder 
et al., 2011). Another argument is that some agents are not entirely ratio-
nal, which can result in asset prices underreacting in the short term but 
overreacting in the long term (Hong & Stein, 1977). Hence, contrary 
to the EMH, asset prices may exhibit trends and cycles. Assets´ rate of 
return may therefore be represented by the following expression, rt = gt 

+ ct. Where rt is the asset´s return rate, gt is the long-term return and ct is 
the cyclical return rate. 

Trend estimation has a long history and its methods have been 
improving over time due to advancements in both computational tech-
niques and in statistical theory and methodology. There is a wide array of 
methodologies, including nonparametric techniques -e.g., kernel models-, 
local polynomial regression, high-, low- and band-pass filters, and wavelet 
multiresolution analysis. Other approaches include semiparametric meth-
ods, -like splines and Gaussian random fields-, and parametric methods, 
-like ARIMA (Auto-Regressive Integrated Moving Average) models, 
Structural Time Series models (proposed by Harvey in 1989), the X-11 
seasonal adjusted procedure (proposed by Cleveland and Tiao, 1976), and 
the Hodrick and Prescott filter (Hodrick & Prescott, 1997). 

Among these different methods to detrend time series, the Hodrick-
Prescott (HP) filter is one of the most popular ones. Its popularity is due to 
the fact that it does not require applying a formal statistical model-building 
process to estimate the trend, as it happens with ARIMA and Structural 
Time Series models. The Penalized Least Squares (PLS) approach that 
gives rise to the HP filter postulates that the trend must minimize the 
function. 

 (1.2)

Where the symbol (Nabla) is defined as the difference yt = yt - yt-1. 
When Nabla is raised to the second power it produces the second degree 
difference equation 2y

t = yt - 2yt-1 + yt-2. That is why the second sum in 
(1.2) goes from t=3 to N.

Detrending (graduation) has two basic opposing characteristics: 
smoothness and goodness of fit to the observed data. That is, the trend is 
the result of the interaction between these two characteristics: to achieve 
one, we must sacrifice the other. The first term of the equation penalizes 
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the cyclic component, while the second penalizes the trend component’s 
growth rate. In this context, λ is a constant that penalizes the lack of 
smoothness in the trend. As λ → 0 the fit of the trend is emphasized over 
smoothness, so that gt → yt . The opposite occurs when λ → ∞, in which case 
the trend follows essentially the straight-line model 2τ

t = 0. Hence λ plays 
a vital role in deciding the smoothness of the trend. 

We argue that despite its popularity, the HP filter presents some draw-
backs that not all its users are aware of. In particular, the selection of λ 
becomes critical for the model’s smoothness and goodness of fit. To the 
extent that it defines the trend and the cyclical behavior over time, the 
entire analysis and conclusions depend on the proper selection of λ. 

The main objective of this book is to present a more general approach 
to the time series smoothing problem suggested by Guerrero (2007). Our 
goal is to present the ideas in a not so technical language and present 
some examples using the proposed methodology. To achieve this goal, we 
developed a friendly routine in “R” that anybody can use for free. This 
routine will allow users to calibrate the smoothness of their time series 
according to their interests. 

Our approach introduces an index of smoothness as a tool for select-
ing the smoothing constant. The controlled smoothness approach, is pre-
sented as an alternative method for choosing the smoothing parameter 
objectively. This technique involves estimating the trend of a time series 
by fixing the desired percentage of smoothness and then determining 
the λ value that satisfies this criterion. This value must be consistently 
employed with all time series to ensure valid comparisons. By fixing the 
same amount of smoothness, the same estimated trend can be obtained 
when the procedure is applied to another set of observations of the same 
variable with fewer or more data points than the previous one. 

Guerrero’s (2007) suggestion is like the interval estimation of a fixed 
parameter Ө, with an expression like  ± κse( ), where se( ) is the stan-
dard error of  and κ a percentile of the appropriate distribution. In such 
a case, it is customary to fix the desired confidence level instead of fixing 
the value of the constant κ on a priory grounds. This approach provides 
a better statistical interpretation of the confidence interval and greater 
comparability with other intervals. By fixing the desired percentage of 
smoothness of the trend estimator, the same benefits can be achieved for 
estimating the trend.
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Furthermore, the length of the time series does not significantly 
impact the estimated trend if the smoothness is controlled. This is a valu-
able property when estimating trends routinely since trend revisions are 
minimized when more data are required. This property makes the method 
ideal for practical applications. Additionally, it is possible to compare esti-
mated trends of time series for different variables, even with different sam-
ple sizes and periodicity of data, just by using the same level of smoothness. 
This is like fixing the confidence level of multiple confidence intervals in 
order to make valid comparisons. What is important is to keep the same 
setting of the percentage of smoothness.

Let us present some examples of how our proposed methodology 
differs from conventional detrending techniques. Figure 1.1 presents the 
logarithm of the quarterly remittance flows received by the Mexican State 
named Jalisco during the period 2003-I - 2022-IV. We compare the trend 
component obtained from applying the seasonal adjustment program 
X-12 ARIMA-SEATS (Panel a) to the one obtained from using the HP 
filter, using the standard smoothing parameter λ = 1600 for quarterly data 
(Panel b). Panels (c) and (d), on the other hand, show the trend estimated 
using λ = 1 and λ = 199, respectively. We can see that the smoothness of 
the trend is quite similar in cases (a) and (c), but noticeably different in 
the other two cases. Therefore, to adequately estimate the trend, we must 
select the appropriate value for the constant λ in an objective manner. 
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When analyzing quarterly data using the HP filter, it is generally 
accepted to use the value λ = 1600. This value was initially proposed 
by Hodrick and Prescott based on the assumption that  and vt were 
independent random variables with a normal distribution N(0, ) and  
N(0, ), respectively. They determined that the appropriate values for σv 
and σs for the US macroeconomic series they were studying were 5 and 
1/8, respectively, resulting in a value of /  = 1600. They also tested the 
results with other values of λ, including 400, 6400, and ∞, and found that 
only with λ = ∞ did the estimated trend change significantly. Therefore, 
the value of λ = 1600 became the consensus for the smoothing constant 
when using the HP filter for quarterly data. 

However, consensus disappears when other frequencies of observa-
tions are used. For example, for annual data, authors like Baxter & King 
(1999) recommended the value λ = 10, while Backus & Kehoe (1992), 
Giorno et al. (1995) and the European Central Bank (2000) used the value 
λ = 100. Regarding monthly data, Dolado et al. (1993) used λ = 4800, 
while the econometric software E-views uses the default value λ = 14400.

Many researchers have suggested statistical methods to estimate the 
smoothing constant, λ, in various situations, as discussed in literature. Kohn 
et al. (1992) looked at a regression function with ARMA errors, while 
Lee (2003) compared multiple methods for selecting λ via Monte Carlo 
simulation. However, it is crucial to note that these methods are compu-
tationally complex and lack interpretation for the numerical value of λ. As 
such, they may not be suitable for estimating time series trends routinely 
and on a large scale.

To take a rigorous statistical approach, one needs to formulate a model, 
estimate its parameters (including λ), and ensure that the assumptions 
underlying it are valid. Harvey & Jager (1993) proposed a structural time 
series model that employs maximum likelihood estimation. However, this 
approach may not be suitable for large-scale applications, even with modern 
computers and fast algorithms, as it requires an explicit statistical model. 

On the other hand, Young (1994), Pedersen (2001), and Kaiser & 
Maravall (2001) took a different approach for choosing the smoothing 
constant. They analyze the results produced by different values of λ, and 
used this information to select the most appropriate value. They looked at 
the effects of λ in the frequency domain and provided criteria for choos-
ing it correctly. This ensures that the HP filter can eliminate cycles with 
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a periodicity that is less than the minimum value required for accurate 
business cycle analysis.

Regarding the so-called automatic methods to choose the smoothing 
constant, λ, they are: Cross Validation, Generalized Cross Validation (Craven 
& Wahba, 1979), Akaike´s Information Criteria (Hurvich et al., 1998), and 
the Bayesian Information Criteria (Schwarz, 1978) all of them are in the 
context of cubic smoothing splines. These methods determine the value 
of λ by optimizing a function that depends on the smoothing parameter. 
Unfortunately, in the presence of high positive correlation in the noise 
component of model (1.1), standard smoothing parameter selectors fail to 
work and overfit the data (Krivobokova & Kauermann, 2007).

This book is structured as follows. In Chapter 2, the basic time series 
concepts are reviewed to ensure the book is self-contained. Chapter 3 
discusses the time series smoothing problem more generally than usual. 
Section 3.1 presents the problem of smoothing time series of any order 
of integration, and the estimation method used is Penalized Least Squares. 
An index of smoothness is deduced and suggested as a tool for selecting 
the smoothing constant. Section 3.2 covers a general version of the filter 
for a time series with an integration order of two and uncorrelated noise 
in the model of the unobserved component. Section 3.3 studies the effect 
of autocorrelation on the smoothness of the trend when the noise follows 
an autoregressive process of order one. Chapter 4 presents the case of a 
time series whose integration order is one, in which case the estimated 
trend employs the exponential smoothing filter.

Chapter 5 presents three examples of how the proposed filter can be 
used in the analysis of trend and cyclical components of economic and 
financial time series.

While there is a fair amount of notation included, the book strives to 
maintain a narrative and informal writing style. Only brief and essential 
proofs are presented formally within the text, while longer and more 
technical proofs are located in the Appendix for optional study.
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Chapter 2
Some Basic Concepts

In this chapter we provide an overview of essential concepts and results 
that facilitate the understanding of the suggested approach to smoothing 
time series. Those familiar with this material can skip the respective sec-
tion or read sub-headings for specific details.

2.1. Matrix Algebra

Definitions

An (nxm) matrix, denoted by an upper bold letter, is an array of numbers 
ordered into n rows and m columns.

If there is only one column (m=1), then A is described a column vector, 
whereas if there is only one row (n=1), then A is called a row vector. If the 
number of rows equals the number of columns (n=m), the matrix is said to 
be square. The diagonal running through a11, a22, ..., ann in a square matrix 
is called the principal diagonal. If all elements off the principal diagonal 
are zero, the matrix is said to be diagonal. A matrix is sometimes specified 
by describing the element in row i and column j as A = [ai,j].
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Summation and multiplication

Two (nxm) matrices are added element by element as follows,

or, more compactly 

The product of an (nxm) matrix and an (mxq) matrix is an (nxq) matrix.

where the row i, column j element of C is given by =1 ailblj. Notice that 
multiplication requires that the number of columns of A be the same as 
the number of rows of B.

To multiply A by a scalar α, each element of A is multiplied by α 

with 

Identity matrix

The identity matrix of order n, denoted In, is an (nxn) matrix with 1s along 
the principal diagonal and 0s elsewhere.
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For an (nxn) matrix A : A x In = A and also, In x A = A.

Power of matrices

For an (nxn) matrix A, the expression A2 denotes AxA. The expression 
Ak indicates the matrix A multiplied by itself k times. A0 is interpreted as 
the (nxn) identity matrix. A is said to be idempotent if AxA = A.

Transposition

The transpose of matrix A(nxm), written A´ is the (mxn) matrix whose 
rows contain the elements of the columns of A. Let aij denote the row 
i, column j element of matrix A, that is, A =[aij], the transpose of A is 
given by A´ =[aji]. A square matrix A satisfying A = A´ is said to be 
symmetric. Transposition of sum and product is governed by the rules:  
(A+B)´= A´+B´; (AxB)´= B´xA´.

Trace of a matrix

The sum of the diagonal elements of a square matrix A is called the trace 
of A, written tr(A). That is, tr(A) = a11+a22+...+ann. For square matrices A 
and B, tr(A+B)= tr(A)+ tr(B), whereas if A is (nxm) and B is (mxn), then 
AxB is an (nxn) matrix whose trace is 

The product BxA is an (mxm) matrix whose trace is 
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Thus,

Matrix inversion

The inverse of a square matrix A(nxn), when it exists, is the (nxn) matrix 
denoted A-1 such that AxA-1 = A-1xA = In. A matrix whose inverse exists 
is called nonsingular. The rules for inverting products and transposes are: 
(AxB)-1 = B-1xA-1 and (A´)-1 = (A-1)´.

To give a rule for computing the inverse of a matrix requires the 
definition of the determinant of a square matrix A, usually denoted |A|. 
This is a scalar quantity that is calculated from the elements of A as fol-
lows. Let A denote an (nxn) matrix and Aji be the (n-1)x(n-1) matrix that 
results from deleting row j and column i of A. The adjoint of A is the (nxn) 
matrix whose row i, column j element is given by (-1)i+j|Aji|. Therefore, 
if the determinant of A is not equal to zero, its inverse exists and is found 
by dividing the adjoint by the determinant:

Positive definite matrices

An (nxn) real symmetric matrix A is said to be positive semidefinite if for 
any real nonzero (nx1) vector x, x´Ax ≥ 0. We make the stronger statement 
that A is positive definite if x´Ax ≥ 0.
•	 Lemma 2.1.1 If A (nxn) is symmetric and positive definite, A-1 is sym-

metric and positive definite.
•	 Lemma 2.1.2. If A (nxn) is symmetric and positive definite, there exists 

a nonsingular matrix P (nxn) such that PAP´ = In and P´P = A-1.
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2.2. Generalized Least Squares

A general multiple linear regression considers the following model,

 (2.2.1)

In these equations, Y represent an (nx1) column vector, X is an (nxk) 
matrix, β is a (kx1) vector of parameters, ε is a vector of order (nx1) called 
the disturbance or error term, and Ώ is a symmetric and positive defi-
nite (nxn) matrix. This model allows for the errors to be heteroskedastic, 
autocorrelated or both.
•	 If Ώ is diagonal with non-constant diagonal elements, the errors terms 

are uncorrelated, but they are heteroskedastic.
•	 If Ώ is not diagonal (Cov(εi, εj) = Ώi,j ≠ 0 for some i ≠ j) and the diagonal 

elements are constant, then the errors are autocorrelated and homo-
skedastic.

•	 If Ώ is not diagonal and the diagonal elements are no constant, then 
the errors are autocorrelated and heteroskedastic.

It is well known that under the following assumptions:

Assumption 2.2.1.

Assumption 2.2.2.

Assumption 2.2.3.

the Gauss-Markov theorem holds and states that the Ordinary Least 
Squares (OLS) estimator OLS is the Best Linear Unbiased Estimators 
(BLUE) of β. 

If OLS is used when ,  is still 
unbiased, that is, since the OLS estimator can be expressed as

then, 

but
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Since , statistical inferences based on the follow-
ing assumptions,

are invalid since, in general ols is a biased and inconsistent estimator of 
, consequently  is also biased and inconsistent. 

In other words, the OLS estimators are unbiased and consistent, but 
their variance estimators are biased and inconsistent, leading to incorrect 
statistical inference results.

To demonstrate how to handle these cases, assume Ώ is known. By 
applying Lemmas 2.1 and 2.2, we can factorize Ώ-1 = P´P. Multiplying 
both sides of (2.2.1) by P yields a linear relation between transformed data, 
with the same parameter vector but a transformed error vector:

 (2.2.2)

Note the properties,

now, by using lemma 2.2.1 and the properties of inverting and transposing 
matrix products, we can deduce the following:

Hence, the transformed regression satisfies Assumptions 2.2.1 and 2.2.2. 
The OLS estimators from the regression of PY on PX are:

 (2.2.3)

This method is called Generalized Least Squares (GLS). By construction, 
since the conditions of the Gauss-Markov theorem have been induced to 
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hold by the transformation, it produces estimators that are BLUE for this 
model. Nevertheless, GLS is not a feasible estimator as it requires knowl-
edge of Ω, which is usually not available. However, the formula provides 
the basis for various feasible procedures involving estimates of Ώ.

The  is unbiased.

The GLS variance-covariance matrix is:

with an estimator of , given by

2.3. Time Series

Time series data refer to observations on a variable that occurs in a time 
sequence; usually, the observations are equally spaced in time. A time series 
model provides a convenient, simple, probabilistic description of a process 
of interest. In this section, we will describe the class of models known 
as Auto-Regressive Moving Average (ARMA). Further details of these 
models can be found in the textbook by Guerrero (2009).

2.3.1. The backshift operator

The backshift operator, B, plays a useful role in carrying out algebraic 
manipulations in time series analysis. It is defined by the transformation.

 (2.3.1)
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Applying B to yt-1 yields Byt-1 = yt-2. Substituting in (2.3.1) gives  
B(Byt) = B2yt = yt-2 and so, in general, 

 (2.3.2)

To complete the definition, let B0 have the property B0yt = yt so that (2.3.2) 
holds for all non-negative integers. 

Let  = 1 - B denotes the difference operator, such that,  
0yt = yt, yt = yt - yt-1, 2yt = ( yt) = (yt - yt-1) = yt - 2yt-1 + yt-2 and so 

on. Therefore, dyt denotes the dth order difference of {yt}, with d a non-
negative integer. 

If yt is a deterministic linear trend, as in yt = a + bt, then

In general, it can be seen that d will reduce a polynomial of degree d to 
a constant.

2.3.2. ARMA model

The non-seasonal ARMA(p,q) model can be written as

 (2.3.3)

where Ө0 is a constant term

is the pth-order autoregressive (AR) operator, and

is the qth-order moving average (MA) operator.
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The variable αt in equation (2.3.3) is the random shock term, also some-
times called the innovation term, which is assumed to be independent 
over time and normally distributed with mean 0 and variance .

The ARMA model can also be written as

2.3.2.1. Stationarity and Invertibility 
If p = 0, the model is a pure MA model, and yt is always stationary. An 
ARMA model with p > 0 AR terms is stationary if all roots of the poly-
nomial in B Φp(B) lie outside the unit circle. If q = 0, the ARMA model 
is pure AR, and yt is always invertible. An ARMA model with q > 0 MA 
terms is invertible if all roots of Φq(B) lie outside the unit circle. 

2.3.2.2. Model mean
The mean of a stationary AR(p) model is derived as

Because E(Өkαt-k) = 0 for any k, it is easy to show that this same expression 
also gives the mean of a stationary ARMA(p,q) model.

2.3.2.3. Model variance
There is no simple general expression for the variance of a stationary 
ARMA(p,q) model. There are, however, simple formulas for the variance 
of the AR(p) and MA(q) models.
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The variance of the AR(p) model is:

where  and ρ1,..., ρp are autocorrelations (see below)
The variance of the MA(q) model is: 

2.3.2.4. Model autocorrelation function
The model autocorrelations

are the theoretical correlations between observations separated by k time 
periods. This autocorrelation function, where the correlation between 
observations separated by k time periods is a constant, is defined only for 
stationary time series. The true autocorrelation function depends on the 
underlying model and the parameters of the model. Standard expectation 
operations can derive the covariances and variances needed to compute 
the autocorrelation function. The formulas are simple for pure AR and 
pure MA models. The formulas become more complicated for mixed 
ARMA models. 

2.3.2.5. The AR(1) process 
The variable yt follows an AR(1) process if

Although the time series is observed at time t = 1, the process is regarded 
as having started at some time in the remote past. Substituting repeatedly 
for lagged values of yt gives

 (2.3.4)
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Now, since |φ|≤1 the component φj is negligible if j is large As j → ∞, it 
effectively disappears and so if the process is regarded as having started 
at one point in the remote past, it is possible to write (2.3.4) in the form

 (2.3.5)

and, since summing the squared coefficients as a geometric progression 
yields 

Therefore, 

and
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2.4. Filtering Time series

In the model

the collection of {γj} is called a linear filter. Clearly, xt is a linear func-
tion of yt and a filtered version of yt. Linear filtering, where γj is a known 
collection of numbers, is often used to identify patterns and signals in a 
noisy time series (in this case, yt). The weights γj could be found in such 
a way as to capture the relevant variation associated with the particular 
component of interest. Thus, a filter for the trend would capture the varia-
tion related to the long-run term movement of the series, and a filter for 
the seasonal component would capture the variation of a seasonal nature. 
A filter designed in this way, with a prior choice of the weights, is an “ad 
hoc” fixed filter in the sense that it is independent of the particular series 
to which it is going to be applied.

Over time, the use of ad hoc filtering has shown severe limitations. 
One major drawback is its fixed nature, which can lead to spurious results, 
and for some series, the component may be overestimated, while for oth-
ers, it may be underestimated. To overcome this limitation, an alternative 
approach is suggested in this book.
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Chapter 3
Trend Estimation of Univariate Time  
Series with Controlled Smoothness

3.1. Time series smoothing through Penalized Least Squares

This chapter heavily draws on the work of Guerrero (2007, 2008) and 
Guerrero et al. (2010, 2018).

When conducting statistical analysis of time series, it is natural for the 
trend concept to arise. This is because the trend of a time series serves as 
a descriptive measure equivalent to the centrality measure of a data set. 
However, it is essential to note that the center of a time series behaves 
dynamically, and analysts often need to distinguish between short-term 
and long-term movements. The common notion of trend is that it reflects 
the long-term behavior of an underlying component of the observed time 
series and evolves smoothly. To extract information from observed data 
about concepts such as permanent income or potential output, smooth-
ing procedures are regularly applied. Economic theories frequently use 
empirically unobservable concepts like expectations and equilibrium vari-
ables. The results provide stylized facts about business cycles (Kydland 
& Prescott 1990, Björnland 2000), or they are used as artificial data in 
econometric analysis; for example, permanent income explains private 
consumption, and the output gap serves as an explanatory variable in a 
Phillips type equation for the dynamics of inflation.

As stated in the introduction, it is common to use an unobserved 
component model representation when analyzing trends. This model 
assumes that the observed time series can be expressed as a signal-plus-
noise model, not because the data was actually generated this way, but to 
account for the patterns found in the data. That is,

yt = gt + vt (3.1.1)
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where for each value of t ranging from 1 to N, {gt} represents the unob-
served trend or signal, which may be a random or deterministic function 
of time, and {vt} refers to the unobserved stationary noise present in the 
observed value of the series being studied, denoted as {yt}. Researchers in 
fields like economics, demography, and finance have being employing this 
type of representation for some time. In an early use of (3.1.1), Whittaker 
(1923) and Henderson (1924) suggested to smooth (graduate) actuarial 
data by solving the following Penalized Least Squares (PLS) problem for 
µ = 0 and λ > 0. PLS produces a method that minimizes a sum of squares 
function that considers fidelity to the original data, plus a penalty for 
the lack of smoothness on the trend. The penalty is given by the sum 
of squared differences of order d of the trend, weighted by a smoothing 
parameter (λ) that trades off smoothness against goodness of fit, as follows: 

 (3.1.2)

Here, µ denotes the mean, if exists, or just a reference level for { }, where 
 = 1 - B denotes the difference operator and B is the backshift operator 

such that Bgt = gt-1 for every subindex t. Therefore,  denotes the dth 
order difference of { }, with d a nonnegative integer. That is, 0gt = gt,  

gt = gt - gt-1, 2gt = ( gt) = (gt - gt-1) = gt - 2gt-1 + gt-2 and so on, in such 
a way that the second term of (3.1.2) is related to the smoothness of .

The parameter λ > 0 is a constant that penalizes the lack of smooth-
ness in the trend. That is, as λ → 0, the trend resembles more closely the 
original data, so that gt → yt for all t, and no smoothness is achieved. The 
opposite occurs when λ → ∞, in which case the trend follows essentially the 
(smooth) polynomial implied by  = µ . Thus, in the latter case, when d 
= 0, the trend will be constant, that is, gt = µ and when d ≥ 1 the trend will 
be given by the polynomial gt = β0 + β1t + ... + βd-1t d-1+(µ/d!)td, where the 
constants βi, for i = 0,1,..., d - 1 depend on the d values of {gt}. Therefore, 
assuming µ = 0 has implications on the degree of the polynomial. 

Intuitively, the minimization problem has two opposing forces. One 
force attempting to minimize the sum of squared cyclical noise. The 
other force is attempting to minimize the sum of squared . The 
smoothing parameter λ, gives relative weight to these two forces.
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The value of d in (3.1.2) is usually chosen by the analyst on a priori 
grounds as d = 2, and seldom is d ≥ 3 used in practice. When µ = 0 and 
d = 1 or 2, the corresponding solution to the minimization problem 
is well-known in the financial and economic literature. They are called 
exponential smoothing and Hodrick-Prescott (HP) filtering, respectively.

For the µ = 0 and d = 2 case, several approaches lead to stochas-
tic models generally used to represent trends of economic time series. 
They are based on: a) Auto-Regressive Integrated Moving Average mod-
els (ARIMA); b) Structural Time Series Models, as proposed by Harvey 
(1989); c) The X-11 Seasonal Adjustment procedure (Cleveland & Tiao, 
1976); and d) the HP filter (Hodrick & Prescott, 1997). The general model 
form employed is 2τt = (1 - Ө1 B - Ө2B2)αt , where the parameters Ө1 
and Ө2 are constant and {αt} is a white noise Gaussian process, that is, a 
sequence of independent and identically distributed random errors with 
normal distribution.

3.1.1. A statistical solution

The minimization problem discussed in (3.1.2) is more general than the 
typical problem studied in the literature, as it does not assume μ to be 
zero beforehand. However, a solution for µ = 0 is available in Kitagawa & 
Gersch (1996), where they approached it through a least squares computa-
tional perspective. King & Rebelo (1993) also obtained the same solution 
using optimal linear filtering tools. In this book, we propose estimating 
a random vector to develop a statistical solution and derive an index 
of smoothness. Therefore, we consider the following tentative statistical 
model for {gt}, which is similar to the one used by Hodrick & Prescott 
(1997) or Kitagawa & Gersch (1996).

(3.1.3)

With {εt} a sequence of serially uncorrelated and identically distributed 
random errors with mean zero and Var(εt) = .

Now, define the following arrays: Y = (Y1,Y2,...,YN), g = (g1, g2, ..., gN)´  
and v = (v1, v2, ..., vN)´ are Nx1 vectors; ε = (εd+1, ε2,..., εN)´ and  
1N-d = (1,1,...,1)´ are N-dx1 vectors (from now on, a prime ´is used to 
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denote the transpose of a vector or matrix). And Kd is the matrix repre-
sentation of the difference operator d, so that,

 (3.1.4)

is an (N-d)xN matrix, with kd the 1x(d+1) vector given by

Where  is the binomial coefficient, and 0m is the 1xm zero 
vector. Thus, the vector of observed data Y can be expressed as

Y = g + v, (3.1.5)

where the trend component is given, for µ known, by

 (3.1.6)

Therefore, combining (3.1.5) and (3.1.6) we have the system of equations:

 (3.1.7)

The following assumptions will be made throughout the book: (i) the 
matrix  has column rank N, (ii) the random vectors v and ε have zero 
mean vector with positive definite Variance-Covariance matrices and are 
uncorrelated, that is, E(v) = 0N, Var(v) = V, E(ε) = 0N-d , Var(ε) = IN-d 
and E(v´ε) = 0, with V a known positive definite matrix. It follows from 
assumptions (i) and (ii) that the vector mean and the Variance-Covariance 
matrix of the combined error vector in (3.1.7) are
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Where the matrix Ώ is positive definite. Therefore, there exists a matrix 
P such that, 

P ’P = Ώ-1 and PΏP ’ = IN-2

Now, by using the matrix P, (3.1.7) can be expressed as follows:

and 

Then, by applying Least-Squares we obtain the following estimation equa-
tion. 

where ĝ is the resulting estimator of the trend g. The unbiased estimator 
for the trend and its respective MSE are:
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 (3.1.8)

 (3.1.9)

A proof of these results is provided in the Appendix.
The proposed model can incorporate several possible statistical and/

or economic modeling assumptions. For instance, taking µ = 0, Reeves et 
al. (2000) consider a diagonal matrix V with non constant variance t , 
 for t = 1, 2, ..., N. Then, the resulting estimated trend corresponds to a 
time-varying smoothing parameter λt. The matrix V could also be used 
to account for the presence of cycles in the observed component by 
considering that {vt} is a stationary and invertible ARMA(p,q) process. 
Harvey (1985) and Harvey & Jaeger (1993) suggest specifying p=2, which 
allows the cycle process to be periodic in the sense of having a peak in its 
spectral density function. These are examples of how to incorporate prior 
information about the economy’s structure. A case that will be considered 
in Section 3.3 is an ARMA(1,0), that is an AR(1) stationary process for 
the {vt} component.

A feasible trend estimator must consider that μ is commonly unknown 
and must be estimated from the data. Thus, an unbiased estimator of µ is 
given by the sample mean of { }, that is, 

 (3.1.10)

therefore, (3.1.8) becomes, 

 (3.1.11)

Further, to measure variability around the estimated series {ĝ} we need 
to estimate  in (3.1.9). Then, under assumptions (i) and (ii), an unbiased 
estimator of  is given by
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 (3.1.12)

The proof is provided in the Appendix.
To appreciate the effect of the constant µ, it is essential to note the 

following remarks. (i) By wrongly assuming µ = 0, the variance ση
2 will be 

underestimated by an amount that grows as λµ2. (ii) We should notice that 
the array Kd’ 1N-d is an N-dimensional vector of zeros, except for the first 
d and last d elements, that is, when d ≥ 1 and given that    
we have,

Therefore, the observed values of the original series {Yt} enter the for-
mula of the estimator ĝ modified in both of its extremes by the value of 
µ, weighted by λ. (iii) It is worth reminding that when extrapolating the 
trend, µ ≠ 0 implies the trend follows a polynomial of degree d. In con-
trast, µ = 0 implies a polynomial of degree d-1. Besides, the extrapolated 
values will depend critically on the least d estimated trend values. That is, 
let ĝN

(h) be the h-period ahead forecast of gN+h, with origin at N, then for 
h ≥ 1 we get ĝN(h)=µ if d=0, ĝN(h)=hµ+gN if d=1, and ĝN(h)=[h(h+1)/2]
µ+(h+1)gN -hgN-1 if d=2.

3.1.2. A measure of smoothness

To apply the proposed method in practice, deciding the value of the 
smoothing parameter λ is the only thing that is required. By looking 
at the precision matrix of ĝ, Γ in (3.1.9), we see that it is composed by 
two precision matrices, σv

-2V-1
NxN associated with expression (3.1.5) for 

the observations, and σε
-2Kd’Kd associated with expression (3.1.6) for the 

smooth component of the series. Measuring the precision contributed 
by the smooth component to the total precision is now interesting. This 
amounts to deriving a scalar measure to quantify the share of σε

-2Kd’Kd in 
(3.9). Such a measure is given by the following expression.

 (3.1.13)
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In the Appendix, it is demonstrated that equation (3.1.13) possesses the 
following characteristics: (1) symmetry; (2) values ranging from zero to 
one; (3) invariance under linear nonsingular transformations of the vari-
able concerned; and (4) linear behavior.

This index evaluates the precision of the smoothness component in 
relation to the total precision. It can be expressed as a percentage to rep-
resent the degree of smoothness in the estimated trend, when multiplied 
by 100%. The higher the index, the smoother the trend.

3.2. Penalized Least Squares of second-order integrated 
processes with percentage of smoothness chosen by the user

As previously mentioned, analysts typically choose the value of d in equa-
tion (3.1.2) to be d ≤ 2, and rarely d ≥ 3 in practice. When µ = 0 and  
d = 2, the solution to the minimization problem is known as the Hodrick-
Prescott (HP) filter, which is commonly used to estimate trends and 
detrend economic time series. However, the HP filter has been criticized 
for its endpoint sensitivity, generation of spurious cycles, and arbitrariness 
in the choice of the smoothing parameter λ. This section presents a slightly 
more general solution by considering µ ≠ 0. 

3.2.1. Trend representation and estimation 

The penalized approach that gives rise to the HP filter postulates that the 
trend must minimize the function. 

 (3.2.1)

As in (3.1.2), λ is a constant that penalizes the lack of smoothness in the 
trend. That is, as λ → 0 the trend resembles more closely the original data, so 
that gt → yt for all t, and no smoothness is achieved. Conversely, when λ → ∞, 
the trend follows the smooth polynomial model τt - 2τt -1 + τt -2 = µ which 
represents the trend growth expressed as a second difference. Therefore, λ 
plays a crucial role in determining the smoothness, while µ is a reference 
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level for the trend growth. It is important to note that the trend follows a 
second-degree polynomial given by this equation

which becomes a straight line when µ = 0. Thus, using µ = 0 as is usual in 
practice has important consequences on the trend behavior, particularly 
at the endpoint of the time series, as will be seen below. 

Therefore, for d = 2, µ ≠ 0 and non-autocorrelated noise component, 
that is Var(η) = l, (3.1.8), (3.1.9), (3.1.11) and (3.1.12) becomes.

 (3.2.2)

 (3.2.3)

 (3.2.4)

 (3.2.5)

where K2 is the (N-2)xN matrix representation of the second difference 
operator appearing on the above formulas 

It is important to note that the estimator  was obtained assuming that 
µ was a known parameter, even though it actually needs to be estimated. 
Therefore, when replacing  with µ, it is necessary to adjust (3.2.5) accord-
ingly. In such a scenario, the suggested estimator would be:  = (N - 2) 

/(N - 2 - 1), that is. 

 (3.2.6)
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In order to understand the impact of the constant µ, it is important to 
note that the array K2´1N-2 in equation (3.2.2) is a vector of zeros with 
dimension N, except for the first two and last two elements. This means 
that K2´1N-2 = (1,1,0,...,0,1,1)´. As a result, the values observed in the 
original series {yt} are included in the formula for the estimator ĝ, which 
is adjusted at both extremes by the value of µ and weighted by λ. Equa-
tion (3.2.2) shows that the smoother matrix (IN+λK2’K2)-1 is applied to  
Y + λµK2´1N-2 = . By 
doing this, the filter adjusts the first and last two values of the series with 
the aim of reducing end-point bias.

It is widely acknowledged that when data is revised or new obser-
vations are made, all previously estimated trend values will change. The 
HP filter has been criticized for being too sensitive at the actual end of 
the sample, which makes it difficult to interpret the estimated trend. This 
is particularly problematic for policy applications that focus on current 
development (see for example, Mohr 2001). A more comprehensive solu-
tion was proposed by Guerrero (2007) (3.2), where µ ≠ 0 helps to correct 
the end-point sensitivity.

3.2.2. Choosing the smoothing parameter to achieve some desired 
percentage of smoothness

The smoothness index (3.1.13) for the non-autocorrelated case becomes. 

 (3.2.7)

In order to measure the level of precision attributed to the trend smooth-
ness induced by model (3.1.6) for d=2, it is recommended to use (3.2.7) as 
a smoothness index. It is important to note that this index only relies on 
the values of λ and N, as K2 remains constant. It is worth mentioning that 
since K2 is a matrix of rank N-2, the matrix K ’2K2 has two eigenvalues of 
zero, while the remaining N-2 eigenvalues can be arranged in descending 
order as e1 ≥ e2 ≥ ... ≥ eN-2. Thus, the trace in (3.2.7) can be expressed as:

and it can be observed that S(λ,N)→ 0 as λ → 0 and S(λ,N)→ 1-2/N as λ → ∞. 
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This means that no matter how large the value of λ is, the trend will 
never achieve 100% smoothness. However, the larger the sample size (N), 
the smoother the trend can be. To express the index in terms of percentage, 
we can write S(λ,N)% to indicate the percentage of smoothness achieved 
by the filter. We must specify the smoothness S(λ,N)% and determine the 
corresponding λ for fixed values of N. It is important to note that there is 
no analytical solution for λ from expression (3.2.7), so it cannot be calcu-
lated directly. Instead, the calculations are done numerically from (3.2.7) 
while keeping N and S(λ,N)% fixed.

The chart in Figure 3.2.1 displays how S(λ, N)% behaves for various 
values of N and λ. Figure 3.2.1 (a) depicts that S(λ, N)% increases rapidly 
as λ grows, but then slows down considerably around λ =1000, regardless 
of the sample size. On the other hand, Figure 3.2.1 (b) demonstrates how 
the sample size affects the results for fixed λ values, which were the same 
ones used by Hodrick and Prescott (1997). In all three cases depicted in 
each graph, the percentage of smoothness is greater than 90%, even when 
the sample size is as small as N=50 or the smoothing constant is as small 
as λ =400.
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Regrettably, it is impossible to derive an analytical expression for λ as a 
function of N and S% from equation (3.2.7). Consequently, Table 3.2.1 
presents values of λ for various sample sizes and percentages of smoothness. 
These values were obtained numerically by solving equation (3.2.7) for 
λ based on the given N and S%.
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Table 3.2.2 offers a useful tool for selecting λ in practical applications with 
sample sizes greater than 120 quarters. The table shows a parsimonious 
function of N that provides a reliable estimate of λ, based on the results of 
estimating a function that approximates the λ values produced by (3.2.7). 
The coefficients of determination (R2) for the estimated simple linear 
regression model (λ) = 0 + 1(1/N) are also provided in the table, all 
of which are very close to unity. This function gives a close approxima-
tion to the true value of λ, making it a handy resource for simplifying the 
selection process.

Table 3.2.2
Estimation of an approximating function that relates  

λ to S% and N, N > 120 (quarterly series)

Approximating function: λ = Exp( 0 + 1 1/N)

S% 0 1 100R2%

60% -0.113914 8.210552 99.951
70% 0.908608 12.324897 99.924

72.5% 1.221603 13.888427 99.91
75% 1.567039 15.791137 99.89

77.5% 1.951985 18.170203 99.88
80% 2.385697 21.217659 99.85
82.5% 2.880539 25.265800 99.80
85% 3.453495 30.918669 99.72

87.5% 4.127088 39.477104 99.55
90% 4.205282 102.804613 95.23

92.5% 5.847323 87.131279 89.72
95% 6.113325 67.069052 99.83

3.2.3. A simulation exercise 

To test the effectiveness of the suggested approach, a simulation exercise 
was conducted. Three dynamic behaviors were analyzed, two nonlinear 
ones and one linear. The first nonlinear series simulated the trend function 
as a specific instance of a piecewise function with the following expression.
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The selection of parameters ai’s and βi’s is such that we get smooth joints. 
That is, αi-1 + βi-1ni + γ0ni

2 = αi + βini + γ0ni
2, for i = 1,2. The function 

specification was decided in order for the trend model implied τt = µ 
to resemble the behavior of an observed time series. Therefore, 

Thus,  except for the discontinuity points located at the obser-
vations t = n1 + 1, n1 + 2, n2 + 1, n2 + 2.

The second nonlinear time series was also defined as piecewise linear 
having the expression.

The selection of intercepts α’s is such that we get smooth joints. That is  
αi + βini = αi+1 + βi+1ni+1, for i = 1, ..., 3. The function specification was 
decided for the trend model implied by  0 to resemble the behavior 
of an observed time series. Therefore
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Thus,  = 0 except for the discontinuity points located at the observa-
tions t = n1 + 1, n1 + 2, n2 + 1, n2 + 2, n3 + 1, n3 + 2, n4 + 1, n4 + 2. The 
parameters of the nonlinear models are specified in Table 3.2.3.

Table 3.2.3
Parameter values for the nonlinear trends

Nonlinear1
N = 120
n1 = 40, n2 = 77

γ0 = 2.4/N

α0 = 5, β0 = 0.4
α1 = 81.8, β1 = 2.32
α2 = 180.36, β2 = 3.6

Nonlinear2

N = 120
n1 = 25, n2 = 77
n3 = 40, n4 = 100

β0 = 8/N
β1 = - 5/N
β2 = 5/N
β3 = - 2/N
β4 = 8/N

α0 = 0.030
α1 = 2.738
α2 = - 0.178
α3 = 4.487
α4 = - 3.845

The linear function for the trend is gt = 1 + 6t/N, for t = 1, 2, ..., N.
In Figure 3.2.2, there are three simulated series that are based on the 

parameters described earlier. The theoretical and trend estimates for these 
series are shown with different smoothing levels. The smoothing indices 
used are obtained from Table 3.2.1. The dotted lines represent the true 
trends. Panels (a) and (b) show the nonlinear time series estimated trends, 
while panel (c) displays the linear time series estimated trends.
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After analyzing the results achieved with different levels of smoothness, we 
can provide some guidance on selecting a suitable degree of smoothness 
in situations where the trend behavior can be identified visually. Guerrero 
et al. (2017) derived some guidelines based on a simulation study, which 
can help determine an appropriate percentage of smoothness. Therefore, 
we recommend the following:
i.	 if the original series behaves as a straight line, choose a large value of 

100S(λ,N)%, starting from 92.5 to 95 % for N ≥ 48, and increase it 
from 95 to 97.5 % for values of N ≥ 100;

ii.	 when the series shows a non-straight-line pattern, the percentage of 
smoothness should start at 80 to 85% for N ≥ 48, and increase it from 
85 to 90 % for values of N ≥ 100.

Let us use an example to illustrate the guidelines presented by Guerrero et 
al. (2017). In Figure 3.2.2, we see a simulated series with a sample size of 
N=120. For Nonlinear1 (Panel (a)), a suggested percentage of smoothness 
of 85% corresponds to a smoothing constant of λ =41.60. For Nonlinear2 
(Panel (b)), a suggested percentage of smoothness of 90% corresponds to 
a smoothing constant of λ =227.92, while for the linear series (Panel (c)), 
a suggested percentage of smoothness of 95% corresponds to a smoothing 
constant of λ =5212.65. All these constants can be found in Table 3.2.1. 
Figure 3.2.3 shows the same simulated series as Figure 3.2.2, but with the 
suggested smoothness percentages and theoretical trends with ∓2 standard 
error bands centered at ĝ. The standard errors are calculated by taking the 
square root of the diagonal elements of Var(ĝ) (see equation (3.2.3)).

The Univariate Controlled Smoothing (UCS) web-tool, developed 
by us, displays trend estimates, ĝ, (Graph 1) and Cycle estimates (Graph 
2) once data in .csv format for univariate time series (with or without 
header) have been uploaded. To the left of the UCS tool, the analyst selects 
parameters related to the filter she wants to use, such as: i) whether the 
constant (µ) is null or not, (ii) difference order (d) (1 or 2); (iii) number of 
standard deviations (SD) for the interval estimates (0, ±1, ±2 or ±3); (iv) 
Correlation (ρ) (-1,1) (see, section 3.3); (v) the selected length of data (by 
default N, although it could be modified); and (vi) smoothing percentage, 
S%, (0.2, 0.9833).

The steps to estimate the trend, cycle, and error bands were the fol-
lowing. First, we chose and uploaded the data to be analyzed and explore 
its trend behavior visually. In this case, the Nonlinear1 simulated series 
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was selected. Two significant observations can be made: (i) the Nonlinear1 
series does not follow a global trend, and the concept of stochastic local 
trend seems better to describe the underlying dynamics of the trend, so 
we chose µ ≠ 0; (ii) the series shows a non-straight-line pattern. Second, 
following Guerrero’s (2017) guideline, a suggested smoothness percentage 
of 85% was set to select the corresponding smoothing parameter, which, 
for a sample size of N=120, corresponds to λ=41.60; d=2, ρ=0, and two 
standard deviations for the bands, were also selected. After configuring the 
parameters, Graph 1 (Figure 3.2.2(a)) displays the estimated trend (ĝ) with 
∓2 standard error bands in the UCS output, while Graph 2 illustrates the 
estimated cycle component (yt - ĝt). Finally, once the analyst has finished, 
the results can be downloaded in .csv format for additional analyses, by 
just pushing the top-right button (“Download results in .csv format”). 

We estimated the trend of the series Nonlinear2 and linear in similar 
manner. 



60 



61



62 

Fi
gu

re
 3

.2
.3

Ex
am

pl
es

 o
f s

im
ul

at
ed

 ti
m

e 
se

rie
s 

w
ith

 e
st

im
at

ed
 tr

en
ds

 b
as

ed
 o

n 
G

ue
rr

er
o’s

 (2
0

17
) g

ui
de

lin
e 

fo
r fi

xi
ng

 a
 s

m
oo

th
ne

ss
 p

er
ce

nt
ag

e.
  

Pa
ne

ls
 (a

) a
nd

 (b
) s

ho
w

 th
e 

no
nl

in
ea

r t
im

e 
se

rie
s, 

w
hi

le
 p

an
el

 (c
) s

ho
w

s 
th

e 
lin

ea
r t

im
e 

se
rie

s.



63



64 

So
ur

ce
: o

w
n 

es
tim

at
es

.



65

It is clear from Figure 3.2.2 that the estimated trend based on Guer-
rero’s (2017) guidelines provides the most accurate approximation of the 
theoretical trend compared to all other estimated trends. The smoothness 
recommended by Guerrero’s guideline is particularly effective.

3.2.3.1. Same time series with different sample sizes 
It is important to note that trends with the same level of smoothness can 
be compared even if the sample sizes are different. To illustrate this, let 
us look at the examples in Figure 3.2.4 (Nonlinear1), where trends were 
estimated for the same series with varying sample sizes. The λ values used 
for 85% smoothness were: 41.60 for N=120, 44.00 for N=96, 48.48 for 
N=72, 59.13 for N=48, and 87.47 for N=30. From Figure 3.2.4, we can 
see that the trend estimates are reasonably similar, especially when the 
sample sizes are comparable.
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We conducted a similar analysis with the HP filter. However, we kept the 
smoothing parameter λ = 1600 constant across all sample sizes. Despite 
criticisms of the HP filter for generating spurious cycles and the ad hoc 
selection of the smoothing parameter without considering sample size, we 
found that the trends estimates were not comparable. By fixing λ = 1600, 
we observed 93.56% smoothness for N=120, 93.35% for N=96, 93% for 
N=72, 92.31% for N=48, and 91.06 for N=30, as shown in Figure 3.2.5.
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Figure 3.2.6 confirms that the trend remains relatively stable despite 
changes in sample size and a fixed percentage of smoothness. The trend 
values show only a slight shift when we zoom in on the central observa-
tions of the 120 original observations. However, the central 35 observa-
tions show a larger difference due to structural changes that occurred 
in observations 40 and 77. The λ values used for 85% smoothness were:  
λ = 74.96 for N=35, =51.97 for N=61, and λ = 44.69 for N=91.
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Based on the examples above, we can see that when we set the same 
specific percentage for the smoothness of a trend for each series being 
studied, we will obtain almost the same estimated trend when we apply 
the same procedure to another time series of the same variable but with 
more or fewer data points compared to the previous one. Moreover, we 
can accurately compare the estimated trend of time series for different 
variables, even with different sample sizes, by using the same amount of 
smoothness. This is similar to fixing the confidence level of various con-
fidence intervals to ensure valid comparisons.

Therefore, the estimated trend will not be significantly impacted by 
the length of the time series if we control smoothness. This is beneficial 
when estimating trends on a massive scale, as trend revisions can be mini-
mized when more data are acquired. The key is to maintain a constant 
percentage of smoothness.

3.3. Penalized Least Squares of second-order integrated 
processes with the percentage of smoothness chosen by the 
user in the presence of noise autocorrelation 

It is widely known that the accuracy and smoothness of the trend compo-
nent in smoothing techniques depend largely on the chosen smoothing 
parameter value, which varies for each technique. To avoid the need for 
trial-and-error parameter selection, several data-driven methods have been 
developed to assist researchers. However, if the presence of autocorrela-
tion in the noise component is ignored, commonly used automatic tuning 
parameter selection methods such as Cross Validation (CV), Generalized 
Cross Validation (GCV) (Craven & Wahba, 1979), Akaike’s Information 
Criterion (AIC) (Akaike, 1973), corrected Akaike’s Information Criterion 
(Hurvich et al. 1988), and Bayesian Information Criterion (BIC) (Schwarz, 
1978) among others, fail to work and could cause overfitting of the data.

According to Krivobokova & Kauermann’s (2007), smoothing with 
correlated errors is a significant issue in time series settings, such as mac-
roeconomic time series. Their study, which focused on penalized splines 
for autocorrelated data, assumes a normal error distribution and uses 
Restricted Maximum Likelihood (REML) to estimate the smoothing 
parameter. Through simulations, they demonstrated that REML’s smooth-
ing parameter choice is more reliable than automatic methods and that 
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moderate autocorrelation structures do not result in over or under-
adjustment. The study also considers problem (3.1.1), which deals with 
both trend adjustment to the data and trend smoothness. Over (under)-
adjustment occurs when an inadequate low (high) value of λ results in 
less (more) weight than necessary on smoothness. The authors assume 
an autoregressive structure of order 1, or AR(1), for the errors with an 
autocorrelation coefficient between 0.0 and 0.4.

Krivobokova & Kauermann’s (2007) research on smoothness sug-
gests that accurately estimating trends is possible when adjustments are 
not excessive or insufficient, even if there is moderate misspecification of 
autocorrelation. However, their simulation study only considered autocor-
relations ranging from 0 to 0.4.

To avoid overfitting, it’s best to consider the correlation structure 
when selecting a smoothing parameter. This means taking into account 
the variance-covariance matrix of the noise component (Var(v) = V), 
which can help to account for correlated noise. In this section, we use the 
smoothness index to study and measure the effect of first-order autocor-
related noise and choose a smoothing parameter accordingly.

3.3.1. Smoothing parameter selection in presence of autocorrelation

The smoothing index for AR(1) noise can be derived by utilizing model 
(3.1.5)-(3.1.6) to represent the univariate time series. It is important to 
note that the vector v is assumed to be a function of the N-dimensional 
vector of serially uncorrelated errors v = (v1,..., vN)´ in this particular case, 
that is

 (3.3.1)
with 

Besides, the variance-covariance matrix is of the form (see Appendix)
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 (3.3.2)

Then, the index of smoothness (3.1.13) that takes into account the pres-
ence of the AR(1) autocorrelation becomes 

 (3.3.3)

3.3.2. The impact of smoothness on the trend when the errors follow an 
AR(1) model

To assess the impact of model misspecification or correlated noise (v) 
on the sensitivity of the smoothing level, we obtained various values of 
S(λ,ρ,N) as explained in (3.3.3) under different scenarios. Tables 3.3.1, 
3.3.2, 3.3.3, 3.3.4 and 3.3.5 demonstrate the changes in the smoothness 
index by fixing the value of λ to achieve 70%, 80%, 82.5%, 85%, 87.5%, 
90%, 92.5%, and 95% of smoothness for sample sizes of 20, 50, 100, 200, 
300, and 500 and ρ values of -0.9, -0.8, -0.6, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 
and 0.9. Since (3.3.3) relies on N, λ, and ρ, we first fixed the number of 
observations and then set the smoothness percentage (S%) assuming no 
autocorrelation (ρ = 0). After that, we calculated the value of λ correspond-
ing to those indices. However, as mentioned before, there is no analytical 
solution for λ from (3.3.3), and therefore, it cannot be calculated directly. 
Therefore, the calculations were performed numerically from (3.3.3) by 
keeping the values of ρ = 0, N, and S% fixed. Finally, with the λ value fixed, 
we calculated the corresponding smoothness index directly from (3.3.3) 
for the different values of ρ.
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Table 3.3.1
S% values as a function of λ for N=20 and different values of ρ

ρ
λ

4.663 32.561 66.318 159.669 511.974 4999999999.9
-0.9 0.652 0.760 0.790 0.821 0.853 0.900
-0.8 0.657 0.764 0.793 0.823 0.855 0.899
-0.6 0.669 0.773 0.801 0.829 0.859 0.899
-0.4 0.679 0.781 0.808 0.836 0.864 0.900
-0.2 0.690 0.790 0.816 0.842 0.869 0.900
0.0 0.700 0.800 0.825 0.850 0.875 0.900
0.2 0.708 0.809 0.833 0.857 0.880 0.899
0.4 0.716 0.819 0.842 0.865 0.885 0.899
0.6 0.721 0.829 0.852 0.873 0.889 0.900
0.8 0.721 0.839 0.861 0.880 0.893 0.900
0.9 0.718 0.842 0.865 0.883 0.894 0.899

Table 3.3.2
S% values as a function of λ for N=50 and different values of ρ

ρ
λ

3.163 16.468 29.201 57.697 132.991 388.642 1721.221 19871.323
-0.9 0.644 0.749 0.779 0.809 0.840 0.873 0.906 0.939
-0.8 0.651 0.755 0.783 0.813 0.844 0.875 0.907 0.940
-0.6 0.664 0.765 0.793 0.822 0.851 0.881 0.911 0.942
-0.4 0.677 0.777 0.803 0.830 0.858 0.887 0.915 0.945
-0.2 0.689 0.788 0.814 0.840 0.883 0.893 0.920 0.947
0.0 0.700 0.800 0.825 0.850 0.875 0.900 0.925 0.950
0.2 0.709 0.811 0.836 0.860 0.883 0.907 0.930 0.952
0.4 0.716 0.824 0.848 0.871 0.893 0.915 0.935 0.954
0.6 0.720 0.836 0.860 0.883 0.904 0.924 0.942 0.957
0.8 0.719 0.847 0.873 0.896 0.916 0.934 0.950 0.958
0.9 0.714 0.851 0.878 0.902 0.923 0.940 0.953 0.959
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Table 3.3.3
S% values as a function of λ for N=100 and different values of ρ

ρ
λ

2.812 13.506 23.111 43.505 93.519 244.872 887.692 6132.677
-0.9 0.641 0.746 0.775 0.805 0.836 0.868 0.901 0.935
-0.8 0.648 0.751 0.780 0.810 0.840 0.872 0.904 0.936
-0.6 0.662 0.763 0.791 0.819 0.848 0.878 0.908 0.939
-0.4 0.676 0.775 0.801 0.829 0.856 0.885 0.913 0.943
-0.2 0.688 0.787 0.813 0.839 0.865 0.892 0.919 0.946
0.0 0.70 0.80 0.825 0.850 0.875 0.900 0.925 0.950
0.2 0.709 0.812 0.837 0.861 0.885 0.908 0.931 0.953
0.4 0.716 0.825 0.849 0.873 0.895 0.917 0.938 0.958
0.6 0.720 0.837 0.863 0.886 0.908 0.927 0.946 0.963
0.8 0.717 0.849 0.876 0.900 0.921 0.940 0.956 0.970
0.9 0.712 0.852 0.881 0.907 0.929 0.947 0.962 0.974

Table 3.3.4
S% values as a function of λ for N=200 and different values of ρ

ρ
λ

2.657 12.287 20.684 38.092 79.384 198.265 662.841 6132.677
-0.9 0.640 0.744 0.773 0.803 0.834 0.866 0.899 0.933
-0.8 0.647 0.750 0.778 0.808 0.838 0.870 0.902 0.935
-0.6 0.662 0.762 0.789 0.818 0.847 0.876 0.907 0.938
-0.4 0.675 0.774 0.801 0.828 0.855 0.884 0.912 0.942
-0.2 0.688 0.787 0.801 0.838 0.865 0.891 0.918 0.945
0.0 0.70 0.80 0.825 0.850 0.875 0.900 0.925 0.950
0.2 0.709 0.812 0.837 0.861 0.885 0.908 0.931 0.954
0.4 0.716 0.825 0.850 0.874 0.897 0.918 0.939 0.959
0.6 0.719 0.838 0.864 0.888 0.909 0.929 0.948 0.965
0.8 0.716 0.850 0.877 0.902 0.924 0.943 0.959 0.973
0.9 0.711 0.853 0.883 0.909 0.931 0.950 0.966 0.978
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Table 3.3.5
S% values as a function of λ for N=300 and different values of ρ

ρ
λ

2.608 11.914 19.950 36.483 75.288 185.273 603.786 3321.041
-0.9 0.639 0.743 0.772 0.802 0.833 0.866 0.899 0.932
-0.8 0.647 0.749 0.778 0.807 0.838 0.869 0.901 0.934
-0.6 0.662 0.762 0.789 0.817 0.846 0.876 0.906 0.937
-0.4 0.675 0.774 0.800 0.827 0.855 0.883 0.912 0.941
-0.2 0.688 0.787 0.812 0.838 0.865 0.891 0.918 0.945
0.0 0.70 0.80 0.825 0.850 0.875 0.900 0.925 0.950
0.2 0.709 0.813 0.837 0.861 0.885 0.909 0.932 0.954
0.4 0.716 0.826 0.851 0.874 0.897 0.919 0.939 0.960
0.6 0.719 0.839 0.864 0.888 0.910 0.930 0.949 0.966
0.8 0.716 0.850 0.878 0.903 0.925 0.944 0.960 0.974
0.9 0.710 0.853 0.883 0.909 0.932 0.951 0.967 0.979

Table 3.3.6
S% values as a function of λ for N=500 and different values of ρ

ρ
λ

2.570 11.626 19.387 35.259 72.205 175.651 561.489 2969.306
-0.9 0.639 0.743 0.772 0.802 0.833 0.865 0.898 0.932
-0.8 0.647 0.749 0.777 0.807 0.837 0.869 0.901 0.933
-0.6 0.661 0.761 0.789 0.817 0.846 0.876 0.906 0.937
-0.4 0.675 0.774 0.800 0.827 0.855 0.883 0.912 0.941
-0.2 0.688 0.787 0.812 0.838 0.864 0.891 0.918 0.945
0.0 0.70 0.80 0.825 0.850 0.875 0.900 0.925 0.950
0.2 0.709 0.813 0.837 0.862 0.885 0.909 0.932 0.954
0.4 0.716 0.826 0.851 0.874 0.897 0.919 0.940 0.960
0.6 0.719 0.839 0.865 0.888 0.910 0.931 0.949 0.966
0.8 0.716 0.850 0.878 0.903 0.925 0.944 0.961 0.975
0.9 0.710 0.853 0.883 0.910 0.933 0.952 0.968 0.980

Based on the above tables, it can be generally observed that when there 
are negative autocorrelations, the smoothness achieved with the λ value 
corresponding to ρ equal to zero decreases as ρ becomes more negative, 
but increases as ρ becomes more positive. Additionally, when the values of 
ρ become more negative, there is a decrease in the percentage of smooth-
ness as N increases; whereas for increasing values of ρ, the percentage of 
smoothness grows as N increases.
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3.3.3. A graphical analysis 

We now use the simulated series Nonlinear1 and Nonlinear2 from the sim-
ulation study in section 3.2, but now with autocorrelated noises. It is 
important to note that both series contain N=120 observations, and the 
errors are now of type AR(1) with autocorrelation coefficients of ∓0.4 
and ∓0.9. To smooth out the two simulated time series (with and without 
autocorrelation), we used PLS with autocorrelated smoothness. Following 
Guerrero’s (2017) guideline, we set the percentage of smoothness to 85% 
and 90% to choose the appropriate smoothing parameters based on the 
assumptions of ρ = 0 and ρ ≠ 0, as determined by equation (3.3.3). 
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In the above-mentioned Figures 3.3.1, 3.3.2, 3.3.3, and 3.3.4, it can be 
observed that the estimated trends with and without autocorrelation are 
quite similar when the autocorrelation is ∓0.4 and -0.9. Additionally, when 
a high percentage of smoothness is considered for the trend estimation, 
panels (a), (b), and (d) of these figures indicate that the estimated trends with 
or without autocorrelation, came closer to the theoretical trend.

When the autocorrelation is positive and high (ρ=0.9), it can cause 
major problems. Panel (c) of Figures 3.3.1, 3.3.2, 3.3.3, and 3.3.4 shows 
that regardless of whether autocorrelation is considered or not, the esti-
mated trend is far from the theoretical trend. The simulated series poorly 
represents the theoretical behavior, as it lies far from the theoretical trend 
in those figures. This has nothing to do with the estimated one. Therefore, 
it is suggested to avoid using this type of trend when there is a large posi-
tive autocorrelation in the noise component.
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Chapter 4
Penalized Least Squares to first-order 
integrated processes with percentage  
of smoothness chosen by the user 

It is commonly accepted that the efficient market hypothesis states that 
financial asset prices reflect all available information (Fama, 1970). This 
suggests that future returns cannot be predicted. However, since the 1990s, 
many researchers have challenged this hypothesis. They argue that risk 
premiums change over time and depend on the business cycle. Financial 
asset returns are linked to slow-moving economic variables that follow 
cyclical patterns according to the business cycle. Another reason to reject 
the efficient market hypothesis is that some agents are not entirely rational. 
This means that prices may underreact in the short term but overreact in 
the long run (Hong & Stein, 1977). Behavioral finance theory (Barberis 
& Thaler, 2002) can explain this phenomenon.

It is widely accepted that prices can demonstrate trends or cycles, as 
supported by the above two arguments. Financial time series are often 
assumed to behave as a random walk, or an integrated of order 1 (I(1)) 
process. Studies, such as Baillie & Bollerslev (1989), have shown that 
currency exchange rates against the US dollar behave as random walks. 
Additionally, Narayan & Smyth’s (2005) study found that stock prices of 
OECD countries should be considered I(1) processes. Tsay’s (2002) con-
ventional model for prices also uses a random walk with drift. As such, 
the random walk model is crucial in financial time series. To decompose 
a financial time series into trend and noise, we opted for the exponential 
smoothing (ES) filter instead of the HP filter, aligning with the idea of 
consistency with the random walk model.
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4.1. Statistical description of the exponential filter

The penalized approach that gives raise to the Exponential Filter (ES) 
postulates that the trend must minimize the function. 

 (4.1.1)

As in (3.1.2) and (3.2.1), λ > 0 is a constant that penalizes the lack of 
smoothness in the trend. That is, as λ → 0 the trend resembles more closely 
the original data, so that gt → yt for all t, and no smoothness is achieved. The 
opposite occurs when λ → ∞, in which case the trend follows essentially 
the (smooth) polynomial model gt - gt-1 = µ, which represents the trend 
growth component. As previously mentioned, λ has a significant impact 
on determining the smoothness, while µ serves as a reference level for the 
trend growth. It is important to note that the trend follows a first-degree 
polynomial, which can be expressed as:

  , (4.1.2)

which becomes a constant when µ = 0, so that using this reference level, 
as is usual in practice has important consequences on the trend behavior, 
particularly at the endpoints of the series, as discussed below.

Therefore, for d=1, µ ≠ 0 and Var(v) = I, (3.1.8), (3.1.9), (3.1.11) 
and (3.1.12) becomes.

 (4.1.3)

 (4.1.4)

 (4.1.5)

 (4.1.6)

where K1 is the (N-1)xN matrix representation of the first difference 
operator appearing on the above formulas 
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 (4.1.7)

And (3.2.6) becomes

 (4.1.8)

As in the case d = 2, to appreciate the effect of the constant µ, it should 
be noticed that the array K1’1N-1 appearing in (4.1.3) is an N-dimen-
sional vector of zeros, except for the first and the last element, that is, 
K1’1N-1=(1,0,0,...,0,0,1)’. Therefore, the observed values of the original 
series {yt} enter the formula of the estimator ĝ modified in both of its 
extremes by the value of µ, weighted by λ. That is, (4.1.3) indicates applying 
the smoother matrix (IN+λK1’K1)-1 to Y+λµK1´1N-1=(y1+λµ,y2,y3,...,yN-2, 
yN-1, yN+λµ), by doing this, the filter adjust the first and the last values of 
the series by means of λµ.

When analyzing daily financial data, there is typically a large number 
of observations compared to quarterly data analysis. As a result, calculating 
ĝ using (4.1.3) or (4.1.5) requires an NxN matrix inversion, which can 
lead to instability and imprecise solutions for large N. While the penal-
ized approach clearly demonstrates the impact of λ, it is not an efficient 
calculation method.

To simplify the estimation procedure for the ES filter, we can rewrite 
the underlying minimization problem in a state-space form. This cast-
ing allows us to utilize the Kalman filter for parameter estimation with 
smoothing.

Kalman filtering requires the formulation of a state space model 
which in its general form has quite a few components: unobservable 
states, observable data, shocks and mapping matrices. The model is writing 
in the following form:

 (4.1.9)
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 (4.1.10)

The Xt s are the (unobservable) state variables, Yt are the observable data. 
(4.1.9) is known as the state equation while (4.1.10) is known as the 
measurement equation. The Z, if present, are exogenous variables in the 
evolution of the state. The Wt are shocks to the states; the Ft matrix has 
the loadings from those shocks to states. The  are any components in 
the description of the observable data which depend upon exogenous 
variables. The Vt are measurement errors. The Wt and Vt are assumed to be 
mean zero, normally distributed, independent across time and independent 
of each other at time t as well. For the ES filter, the model takes the form:

with Var(εt) =  and Var(vt) = . Thus, the state and measurement equa-
tions for the ES filter are:

.

Besides, λ is given by the variance ratio / . Thus, to equate the results 
of the Kalman filter to those obtained with (4.1.3) or (4.1.5), it is assumed 
that  = 1 and  = λ.

It’s important to note that financial series may have missing values 
during holidays. However, we can still determine the trend using the avail-
able data. This is possible due to the use of the Kalman filter for estimation. 
We skip the filter step in the Kalman filter recursions to estimate trend 
values with missing data.

4.2. A measure of smoothness

The smoothness index (3.1.13) for the non-autocorrelated case becomes. 

 (4.2.1)

Just as when d=2, the index solely depends on the values λ and N since 
K1 remains fixed. It is important to note that K1 is a matrix of rank N-1. 
Therefore, the matrix K ’1K1

 has one eigenvalue equal to zero, while the 



97

remaining N-1 nonzero eigenvalues can be arranged in descending order 
as e1 ≥ e2 ≥ ... ≥ eN-1. Consequently, the expression in (4.2.1) for the trace 
can be expressed as:

and it can be observed that S(λ,N) → 0 as λ → 0 and S(λ,N) → 1 - 1/N as 
λ → ∞. 

It is important to note that no matter how high the smooth con-
stant λ is, the trend will never attain 100% smoothness. However, more 
smoothness can be achieved with a larger sample size (N). To find the 
corresponding λ for fixed values of N, we need to specify the smoothness 
S(λ,N)%. It is essential to remember that there is no analytical solution for 
λ from expression (4.2.1), so it cannot be calculated directly. Instead, the 
calculations are performed numerically by keeping N and S(λ,N)% fixed.

In Figure 4.2.1, the behavior of S(λ,N)% is displayed for different val-
ues of N and λ. Figure 4.2.1(a) depicts the impact of sample size on fixed 
λ values. For λ > 50, the percentage of smoothness is greater than 95% in 
all four cases shown in the figure. Additionally, Figure 4.2.1(b) indicates 
that S(λ,N)% grows rapidly with increasing sample sizes. When N=50, the 
percentage of smoothness is over 90% for λ values as small as 50, and the 
smoothness remains essentially constant when the sample size is greater 
than 50, regardless of the λ value.
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Regrettably, just like in the case of d=2, it is not feasible to derive an 
analytical expression for λ as a function of N and S% from (4.2.1). As a 
result, Table 4.2.1 presents λ values corresponding to different percentages 
of smoothness for various sample sizes of daily series. These values were 
computed numerically by solving equation (4.2.1) for λ, using specific N 
and S% values.
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In practical applications, we simplify the selection of λ by searching for 
an approximating function of N and S% that fits well with the values in 
Table (4.2.1). We seek several regression models for each S% and show the 
estimation results of the best generic fitting models in Table (4.2.1). It is 
important to note that the value of λ produced by the regression models 
are just approximations of the true values in Table (4.2.1). In Table (4.2.2), 
it is required that 1+ 0N be positive for λ to be positive. The models in 
Table (4.2.2) are helpful in interpolating and, more importantly, extrapo-
lating values for large sample sizes compared to those in Table (4.2.1).

Table 4.2.2
Estimation results of fitting models that relate λ with N and S% (Daly series)

Approximating function: λ = N/( 0(1/N)+ 1)

S% o 1 R2

50 1.330926 -2.441994 0.9989
52.5 1.163152 -2.236259 0.9988
55 1.013489 -2.048598 0.9988

57.5 0.879735 -1.877245 0.9988
60 0.760042 -1.720511 0.9989

62.5 0.652910 -1.577394 0.9991
65 0.557032 -1.446773 0.9994
67.5 0.471344 -1.328060 0.9996
70 0.394926 -1.220657 0.9997

72.5 0.327008 -1.124258 0.9992
75 0.265943 -0.966738 0.9989

77.5 0.212628 -0.853266 0.9989
80 0.166080 -0.746888 0.9991

82.5 0.125913 -0.648564 0.9994
85 0.091809 -0.559848 0.9992

87.5 0.063195 -0.452528 0.9992
90 0.040246 -0.366093 0.9990

92.5 0.022526 -0.273268 0.9991
95 0.009949 -0.177600 0.9994

4.3. Daily data and extension to other frequencies

When estimating the trend of a time series with a frequency of observa-
tions different than daily, it is not sufficient to use the same λ obtained for 
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a daily time series. This is because the sample size changes for each type 
of periodicity under consideration. For instance, if the observation period 
spans the years 2015-2022, there are either 2920 daily data or 2080 daily 
data by considering 5-day weeks, 416 weekly data, or 96 monthly data. 
Therefore, for each of these series and the same percentage of smoothness 
S%, Table 4.2.1 would lead to different λ values. However, it is essential to 
remember that the long-term behavior of the series must be essentially 
the same, regardless of the periodicity of the time series. Additionally, it is 
worth noting that a time series with a lower frequency of observation is 
related to that with a higher frequency using some aggregation mecha-
nism. Maravall & Rio (2007) recognized this fact and proposed different 
solutions to find λ values that produce equivalent results on time series 
with different periodicities, from a frequency domain perspective.

In cases where time series are nondaily, the selection of the smoothing 
constant will be determined by a time domain methodology that produces 
an equivalent level of smoothness as the daily series. This methodology 
considers the aggregation type that connects a lower-frequency series 
{Y*

T} with a higher-frequency time series {Yt}.
The aggregation is assumed to be linear, that is,

 (4.3.1)

with n=[N/k], where [x] stands for the integer part of a real num-
ber x, and k is the number of Yt observations between two succes-
sive observations Y*

T. The constants δi determine the aggregation type. 
For example, δ1=δ2= ... =δk=1 is used to aggregate a flow series and  
δ1=δ2= ... =δk=1/k is used for working with an index or an annualized 
flow series (which is also considered a flow series). When working with 
a series of stocks, the aggregated time series is generated by systematic 
sampling. In this case, the usual values are δ1=1,δ2= ... =δk=0 or δ1=δ2= ... 
=δk-1=0, δk=1. Without loss of generality, in what follows we shall assume 
that δ1=δ2= ... =δk =1 for a flow time series and δ1=δ2= ... =δk-1 =0, δk =1 
for a time series of stocks. Thus, let T and t represent the time sub-index 
for the aggregated and disaggregated time series, respectively, then, 
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(4.3.2)

The model to be applied to the aggregated data preserves the form (3.1.5) 
and (3.1.6) for d=1, that is,

 (4.3.3)

 

(4.3.4)

and E(ε*v*’)=0, where * is used to denote aggregate variables. Therefore, 
(4.1.3), (4.1.4), (4.1.5) and (4.1.6) become

 (4.3.5)

 (4.3.6)

 (4.3.7)

 (4.3.8)

While expressions (4.1.5) and (4.3.5) share the same form, they produce 
different trends. In fact, aggregating the trend {ĝt} estimated from the 
disaggregated series results in different values than those of the estimated 
trend {g*

T} acquired directly from the aggregated series. Nevertheless, as it 
is shown in the Appendix, it is possible to find a smoothing constant λ for 
a disaggregated series that is equivalent to the λ*

k value for the aggregated 
data, as follows:

 (4.3.9)

It is important to note that if the smoothing constant λ for the disaggre-
gated time series is known, we can use equation (4.3.9) to solve for the 
corresponding value of λ*

k. This will be helpful in the analysis.
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4.4. A simulation study

To verify numerically the performance of the suggested procedure, a simu-
lation study was run. Two random walks were considered, one with drift 
and the other without drift. The random walk hypothesis (Fama, 1965) 
corresponds to a financial theory stating that stock market prices evolve 
according to a random walk with drift (so price changes are random) and 
thus cannot be predicted exactly. Let Xt be today’s log-price of a stock. The 
value of X for tomorrow, Xt+1, will equal today’s value, Xt, plus a constant 
value ρ0, plus a random shock εt. The shock is a random variable satisfying  
ε

t ~i.i.d.N(0, ). Then the random walk model is the following.

 (4.4.1)

εt is a random shock for each day, resulting from the log-price movements 
due to all news that influence the price, while ρ0 refers to the drift of the 
series. If |ρ0|>0 the series is a random walk with a drift. If ρ0>0, then the 
series will have a positive trend over time, if ρ0<0, the series will have a 
negative trend. 

To simulate a random walk, the values of the following parameters 
are required. 
•	 X0, the first value of the series
•	 ρ0, the drift of the series
•	 , the volatility of the random shock.

Substituting repeatedly for lagged values of Xt gives

Therefore, doing the same until the last T value, it follows that
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 (4.4.2)

so that, 

from this expression, ρ0 can be estimated as

 (4.4.3)

Now,

and the measure of the shocks’ volatility, in relation to the series’ overall 
volatility, is determined by:

 (4.4.4)

To estimate the three parameters for simulating a random walk series, 
we will employ the S&P500 daily data from Yahoo Finance, from Janu-
ary 2011 to May 2023. To achieve this, we need to generate the log of 
the S&P500 index. Using (4.4.3), we obtain the value of ρ0 equal to 
0.000383058; from (4.4.4) we get the value of  equal to 0.006913685. 
Additionally, the initial value is 7.148. We then generated random shocks 
from a N(0, 0.006913685) distribution. Finally, we simulated two random 
walk series. The first one, called rw1, is a random walk with drift, while 
the second one, named rw2, is a random walk without drift.

Figure 4.4.1 panel (a) shows the simulated random walk with drift. We 
started the random walk with the first value of the log of S&P500. Then, 
from day 2 we ran the simulation according to the previous formula, using 
the random shock jus created. In a similar way, we simulate rw2 from
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Figure 4.4.1, Panel (a) displays the simulated random walk with drift and 
sample size of N=3122. Following Guerrero’s guideline (2017), a 95% 
percentage of smoothness was set to select the corresponding smoothing 
parameter from (4.2.1). For daily data, the smoothing parameter value is 
λ = 101.1. Panel (b) shows the daily time series and its trend. Panel (c) 
exhibits the weekly time series and its trend, constructed from the daily 
data. It is important to note that this is a series of stocks, and the sample 
now comprises N=624 weekly observations, considering five-day weeks. 
The smoothing constant for the weekly series is λ*

5 = 20.22 for S%=95%, 
as obtained from (4.3.8) by λ = 5λ*

5. Lastly, Panel (d) shows the monthly 
time series and its trend, also built from the daily data. The sample size for 
this series has N=157 observations, and the value of λ for monthly data is 
λ*

20 = 5.05 for S%=95%, obtained from (4.3.9) by λ = 20λ*
5. By visually 

inspecting Panels (b), (c), and (d), we can observe that the resulting trends 
with the same smoothness percentage display essentially the same dynamic 
behavior, regardless of the frequency of data observation.
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On the other hand, Figure 4.4.2 Panel (a) shows the simulated random 
walk without drift and sample size N=3122. Then, following Guerrero´s 
(2017) guideline the percentage of smoothness suggested is 90% to choose 
the corresponding smoothing parameter from (4.2.1), which takes the 
value λ= 24.9 for daily data, Panel (b) shows the daily time series without 
drift and its trend. Panel (c) shows the weekly time series without drift 
and its trend built from the daily data. As in the random walk with drift, 
it should be stressed that this is a series of stocks (it is chosen as every 
fifth value of the sample under consideration). The sample now consists 
of N=624 weekly observations, considering five-day weeks. The value 
of λ is obtained from (4.3.8) as follows λ = 5λ*

5, therefore, the smoothing 
constant for the weekly series is λ*

5 = 4.98 for S% = 90%. Finally, Panel 
(d) shows the monthly time series without drift and its trend built, also, 
from the daily data. The sample for this series is N=157 observations. The 
value of λ for the monthly data is also obtained from (4.3.8) as λ = 20λ*

5, 
and takes the value λ*

20 = 1.245 for S%=90%. In the same way, by a visual 
inspection of Panels (b), (c), and (d), the resulting trends with the same 
percentage of smoothness show essentially the same dynamic behavior, 
no matter what the frequency of observation of the data is. 
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4.4.1. Same time series with different sample sizes 

It is important to note that trends obtained with the same percentage of 
smoothness are comparable even if the sample sizes differ, just like in the 
case of d = 2. To demonstrate this, we estimated the trend of the monthly 
random walk without drift, previously shown in Figure (4.4.2) Panel (d), 
with different sample sizes. To achieve this goal, we need to obtain the 
λ*

20 value of the monthly series, which is equivalent to the smoothing 
parameter λ used with the daily series. In the case of a stock series, the 
equivalent smoothing constants are related by λ = 20λ*

20. For sample sizes 
of daily data, N=84, 52, and 36, the values of lambda that produce 90% 
of the smoothness of the trend are λ=24.982, λ=25.066, and λ=25.165, 
respectively. Therefore, the corresponding smoothed parameters for the 
monthly series are λ*

20 = 1.249, λ*
20 = 1.253 and λ*

20 = 1.258. The resulting 
trends are depicted in Figure 4.4.3, and it can be observed that the trend 
estimates are reasonably close to each other.

Based on the examples given, it is evident that the λ values in Table 
4.2.1 and the values derived from the fitting models in Table 4.2.2 work 
best for time series comprising daily observations. The process for select-
ing the smoothing constant of a daily time series can also be applied to 
other types of time series. The formula for determining the equivalent 
smoothing constant is simple for flow and stock series. Moreover, using the 
daily observation frequency as a standard reference point offers empirical 
benefits. Thus, we address the issue of finding the trend for the same time 
series with different periodicities. Our findings suggest that trends with 
the same degree of smoothness, but different periodicities, display similar 
dynamic behavior.
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Chapter 5
Empirical Applications

In this chapter, we showcase how our developed UCS web-tool can be 
used to obtain trend and cyclical components of observed time series. 
We present three examples, two of which come from economics and 
one is financial. The first problem we address is related to the high levels 
of crime rates faced by Mexican society for almost three decades. The 
second example measures the impact of monetary policy decisions made 
by Mexico’s Central Bank on economic activities in different regions of 
Mexico. The third example studies the long-run evolution of oil prices.

5.1 Case 1: Economic growth and crime

Let us start with the problem of public insecurity. According to Mexico’s 
Federal Penal Code (FPC) crimes can be classified into two types: Fed-
eral Crimes (FC) and Common Crimes (CC). In general, FC are those 
that affect people’s health, heritage, and the nation’s security. For instance, 
offenses like treason, espionage, sedition, rebellion, and terrorism among 
others. CC on the other hand, are those that affect directly to people as 
individuals. These are organized by the type of legal right affected; that 
is, life and bodily integrity, personal liberty, sexual liberty and security, 
property, family and society among others. Examples are robbery, extor-
sion, rape, etc. 

By its nature, CC represent the most serious challenge to Mexican 
authorities since almost 95 percent of total crimes are common crimes. 
To the extent that they involve a wide range of felonies, it has been very 
difficult to pinpoint their main determinants. However, an increasing 
number of studies have been able to identify key characteristics of their 
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behavior over time. This identification process shall eventually help us 
define and implement a public security policy that would attenuate and 
even reduce the level of crime significatively. 

Since the mid-90s crime analysis has been a growing area within 
criminology that uses not only different theories of crime but methods of 
analysis as well. For instance, analyses of crime by geographical areas, -led 
by Place Theories of Crime-, have allowed researchers to identify crime 
hotspots, i.e., areas with high crime intensity. Moreover, for Crime Pattern 
Theory, crime is not a random phenomenon since it is either planned or 
opportunistic (Brantingham & Brantingham, 2008). In effect, this theory 
sustains that those criminals commit their crime in specific areas and times 
that respond to victims’ and offenders’ patterns of behavior. 

Within criminology there are competing theories about how to ana-
lyze and identify the key determinants of crime. Environmental criminol-
ogy, for instance, is a family of theories that focus on crime events, the 
circumstances in which they occur and their changing nature, while crime 
economics focuses on identifying the main determinants of individual’s 
criminal behavior and evaluating their economic impact. In any event, all 
theories need to test their hypothesis so that they can make predictions 
about emerging problems or future trends. This information will help 
develop strategies that might be employed to prevent crime. 

Nowadays, there are different statistical instruments that help analyze 
crime data. These instruments can help us identify spatial as well as tem-
poral patterns of crime. Spatial-temporal patterns of crime can be ana-
lyzed using spatial econometrics, while temporal patterns can be studied 
through time series econometrics. As already discussed in the previous 
two chapters, a first step is the decomposition of the series into its trend 
and cyclical components.

Time series of crime can refer to any type of crime (burglary, kid-
napping, fraud, rape, robbery, etc.) and its scope can be a neighborhood, 
county, city, region, or country. Therefore, the use of time series tech-
niques is flexible and can be applied to any type of crime or to any level 
of aggregation. Study of the trend component is more associated to the 
study of the long-term behavior of the series; that is, the crime behavior 
that is persistent over time. 

There are several explanations about the persistence of crime. From 
the economics of crime’s perspective, once a person has committed a 
crime, his/her criminal human capital relative to his/her legal human 
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capital has increased. This higher (relative) criminal human capital makes 
the individual not to give up easily criminal activities. This effect might 
be reinforced by the fall of learning costs associated to criminal activities, 
which will increase crime’s rate of return. Another explanation is based 
on the effect that crime has upon the interaction between moral costs and 
learning of crime technology; that is, before a person commits any crime, 
both high moral costs and low knowledge of criminal technology act as 
crime deterrent factors. But once this person starts committing criminal 
activities, these deterrent factors start disappearing, i.e., moral costs fall 
while learning crime technologies increase. 

These arguments help us understand why we observe crime’s long-
term behavior. But the analysis of the long-term component would also 
tell us whether there were changes in the underlying factors that explain 
it and in what direction. In addition, we can also use the long-term com-
ponent to predict long-term behavior. 

In what follows we analyze the behavior of total crime in four Mexi-
can States: Nuevo Leon, Mexico City, Jalisco, and Guanajuato. Mexico 
City, Nuevo Leon and Jalisco are three of the largest states in terms of 
population. Guanajuato, on the other hand, is one of the fastest growing 
States in manufacturing. We are interested in comparing the evolution of 
their crime levels’ trend component. 

Figure 5.1.1 displays quarterly total crime data from 1997-I to 2017-
IV in Nuevo Leon, Mexico City, Jalisco, and Guanajuato. The data shows 
non-linear behavior with no overall trend, and the concept of stochastic 
local trend seems better to describe the underlying dynamics of the trend, 
so we chose µ ≠ 0.
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Figure 5.1.1
Quarterly total crime data from 1997-I to 2017-IV  

in Mexico City, Jalisco, Nuevo Leon, and Guanajuato
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The suggested percentage of smoothness of 80% was used to select the 
smoothing parameter, based on Guerrero’s (2017) guideline, resulting in 
λ=14.05 for a sample size of N=83 quarters. The smoothness percentage 
was kept constant among the four series under study to enable adequate 
trend comparison. To illustrate the use the UCS web-tool to estimate of 
the trend and cycle’s components we use the time series of Mexico City’s 
total crime. 
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To the left of the UCS tool (in Figure 5.1.2), we select parameters related 
to the filter we want to use; in this case, we chose µ ≠ 0, a difference order 
(d) equals to 2, two standard deviations (SD) for the estimated error 
bands of the trend, noncorrelation, ρ=0 (see section 3.4), and percentage 
of smoothing S%= 80%. Figure 5.1.2 displays trend estimates (Graph 1), 
as well as cycle estimates (Graph 2) once data in .csv format for the uni-
variate crime time series was uploaded. The estimated trend component 
(ĝ) is shown with ∓2 standard error bands, while the estimated cycle 
component (yt - ĝt) is shown below it. Our results were downloaded in 
.csv format for additional analyses, by just pushing the top-right button 
(“Download results in .csv format”). We estimated the trend and cycle 
of the total crime series for the other States, i.e., Jalisco, Nuevo León and 
Guanajuato in a similar manner. 

Figure 5.1.3 shows total crime’s long-term evolution during the 
period of analysis. Except for Mexico City, total crime shows an upward 
trend in Nuevo Leon, Jalisco, and Guanajuato. The graph also shows that 
crime in Nuevo Leon and Jalisco evolves in a parallel fashion since the late 
90s. A third characteristic is that among these States, Guanajuato shows 
higher long-term growth of total crime. 

Figure 5.1.3
Trend of Total Crime in selected states: 1997-I to 2017-IV 

Source: Own estimates

We now evaluate the relationship between the Index of Physical Volume’s 
and Total Crimes’ cyclical components following the methodology pro-
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posed by Kydland & Prescott (1990). Table 5.1.1 presents the estimated 
cross correlations between output and crime’s cyclical components for the 
selected entities. Each cell represents the value of the correlation between 
the cyclical components of the Index of Physical Volume (IPV) and Total 
Crime (TC) at different lags for each of the selected states, 

Table 5.1.1
Cross Correlation between the cyclical components  

of the state’s Index of Physical Volume and Total Crime

State
Nuevo Leon Jalisco Cd Mexico Guanajato

X(t-8) -0.078 -0.068 0.133 -0.063
X(t-7) -0.149 -0.188 -0.193 -0.262
X(t-6) -0.064 -0.152 0.032 0.091
X(t-5) 0.204 0.23 -0.018 0.047
X(t-4) 0.078 -0.078 0.211 0.104
X(t-3) -0.066 -0.088 -0.129 -0.071
X(t-2) -0.061 -0.078 0.042 0.106
X(t-1) 0.115 0.197 -0.158 -0.096
X(t) 0.035 -0.034 0.14 -0.034
X(t+1) 0.111 -0.155 -0.198 -0.203
X(t+2) 0.052 -0.129 -0.015 0.094
X(t+3) 0.149 0.241 -0.118 0.04
X(t+4) -0.034 0.001 0.174 0.123
X(t+5) -0.103 -0.153 -0.137 -0.061
X(t+6) -0.102 -0.029 0.058 0.164
X(t+7) 0.048 0.145 -0.085 -0.003
X(t+8) -0.057 0.095 0.224 0.05

Source: Own Estimates

In the case of Nuevo Leon, we observe that there is a slight indication that 
it may be procyclical; however, crime might anticipate economic activity 
by about five quarters. Crime in Jalisco, on the other hand, seems to be 
procyclical as well; however, it appears to lag economic activity by about 
three quarters, that is, crime is procyclical. Crime in Mexico City also 
seems to be procyclical, but the strongest correlation occurs when crime 
lags to economicactivity by eight quarters. Unlike the previous cases, the 
crime and economic activity seems to be countercyclical in Guanajuato. 
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The cross correlation is strongest in the seventh quarter when crime 
antecedes economic activity. 

In short, Table 5.1.1 present some evidence about the relationship 
between the cyclical components of economic activity and crime. The 
results, however, are not as conclusive as one might have expected. A pos-
sible explanation is that the crime variable may need to be more specific. 
In our analysis we have used total crime, probably we would need to use 
economic crimes instead. Another element that we need to consider is 
whether the Index of Physical Volume is the proper indicator of economic 
activity. Perhaps a more precise indicator could be an income indicator. 

5.2. Case 2: Regional Effects of Monetary Policy in Mexico

For this example, we also use Kydland & Prescott´s (1990) proposed meth-
odology to analyze business cycles to explore the regional impact of mon-
etary policy in Mexico. To recall, the latter is based on the estimation of 
cross correlations between the cyclical components of monetary and real 
sector variables against the GDP’s cyclical component. Our interest is to 
somehow evaluate the effect of monetary policy upon output fluctuations 
in a selected group of Mexican States. As is well known, Mexico’s Central 
Bank, Banco de México, is the sole authority that determines the country’s 
monetary policy. Since 1994, it has been an autonomous monetary author-
ity that officially adopted inflation targeting as its strategy to maintain price 
stability in 2002; albeit it had begun implementing early measures towards 
that goal since 1995 (Ramos-Francia & Torres-Garcia, 2005). 

Banco de México’s decision was in tune with other Central Banks’ 
decisions around the world about implementing inflationary targeting as 
a framework to conduct their monetary policy. The main goal of such a 
strategy is price stability, achieved through the setting of a nominal anchor 
to tie down the price level. It is argued that inflation stability is a necessary 
condition for sustainable growth for several reasons. First, it induces low 
inflation expectations which affects positively private sector’s investment 
decisions. Second, it contributes to an efficient allocation of resources 
since relative prices are likely to remain stable. Third, low and stable infla-
tion implies low social and economic costs since the purchasing power of 
money remains stable; thus, consumers enjoy higher welfare. An additional 



129

positive outcome is that there is no redistribution of income from loaners 
to borrowers, which would induce more savings.

To accomplish its goal, Banco de Mexico (Banxico) sets the equilib-
rium interbank interest rate (TIIE) based on quotes presented by credit’s 
institutions. The initial change in interest rate affects inflation through 
several channels. These channels, also known as transmission mechanisms 
of monetary policy, affect both aggregate demand and supply to different 
degrees, both of which induce price changes. In other words, to achieve 
its objective of price control, monetary policy induces changes in the 
economy’s real sector. 

Let us see what these transmission mechanisms are and how they 
work. Banxico in its statement about the effects of monetary policy 
(Banco de México, 2023b)1 reports five different transmission channels: 
i) interest rates, ii) credits, iii) exchange rates, iv) other assets’ prices, and 
v) expectations. 

In the first case, Banxico decides to change short-term interest rates 
when inflation expectations are off its expected values. In general, an 
increase in the interest rate increases capital´s costs to finance projects as 
well as the opportunity cost of current consumption. These two factors 
constrain demand, and thus price growth. Credits, in turn, are also affected 
by the increase in interest rates since now it is more expensive to finance 
investments and purchases. Financial intermediaries may also decide to 
restrict the amount of available credit since the risk of default is greater. 
All in all, aggregate demand is negatively affected. 

The exchange rate channel kicks in when the domestic interest rate 
makes more attractive domestic financial assets compared to the foreign 
ones. In this case, there is an influx of foreign capital which appreciates 
the domestic currency. As a result, net exports tend to decline, i.e., exports 
decline while imports increase. An additional effect of the depreciation 
of foreign currency is that it affects overall domestic prices directly since 
prices in domestic currency of imported goods decline. In short, the 
exchange rate channel affects not only the real sector of the economy, but 
also the price level directly.

The fourth channel operates when the increase of the interest rate 
makes Bonds more attractive than other financial assets, in particular stock 

1. A further description can be found in Banco de México (2023). 
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prices, which, in turn, may have as an unintended consequence the decline 
in the market value of some private firms. The latter may further com-
plicate these firms´ access to finance new investment projects, which will 
result in a decline in aggregate demand. 

The last channel, expectations, -and in particular inflation expec-
tations-, have become a very important channel since depending on 
whether they are off targets, can induce Banxico to modify its monetary 
policy. However, as Tobias (2023) points out there are different expecta-
tions; for example, near- and long run-time expectations. There are also 
households’, markets’, and forecasters’ expectations, and Banco de México 
must consider the behavior of all of them in its decision-making process. 
This is so because they affect economic agents’ consumption and invest-
ment decisions. Long-term expectations are also considered indicative of 
the Central Bank’s credibility in controlling inflation. 

It is well known that Mexico’s economy is characterized by having 
great regional contrasts. The regional differences include not only dif-
ferences in endowments, climate, but also in productive structure and 
stage of economic development. Given these differences across states or 
regions we are interested in exploring how different are the effects of a 
given monetary policy across a small group of Mexican States. To do that 
we propose to use Guerrero’s filter to obtain the cyclical components of 
an indicator of monetary conditions as a proxy of monetary policy and 
of the economic sectors for a group of five Mexican States. 

Therefore, we estimate a Monetary Conditions Index (MCI). We 
argue that MCI can be a good alternative indicator of monetary condi-
tions when we are dealing with a small open economy like Mexico. In 
an open economy with free capital mobility and exchange rate market, 
interest rates´ increases might induce an influx of financial capital which, 
in turn, induces an appreciation of the domestic currency; that is, a con-
tractive monetary policy is reinforced by an appreciation of the domes-
tic currency which further contracts aggregate demand. There are other 
instances when monetary conditions change without explicit intervention 
of the Central Bank. For instance, foreign banks may decide to change 
their relevant interest rates or when there are external shocks that affect 
trade balances that, in turn, pressure exchange rates to either devaluate or 
appreciate the domestic currency. 

However, the use of MCI as an indicator of monetary policy is not 
without controversy. As Stevens (1998) has pointed out there are some 
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problems with its use as an indicator of monetary policy because monetary 
conditions may change even when the Central Bank has not modified 
any of its instruments as is the case when there is an unforeseen external 
shock to the foreign exchange market. There are other issues that we shall 
not discuss here because it will deviate us from our main objective. Let 
us just say that MCI is not an instrument of monetary policy, it is just an 
alternative indicator of monetary conditions that affects the economy’s 
real sector. In that sense, it tells us whether the monetary conditions are 
favorable to aggregate demand or not. An increase of the MCI is seen as 
tighter monetary conditions, whereas a reduction of the MCI is associated 
to looser monetary conditions, thus favoring aggregate demand (Stevens, 
1998; Costa, 2000).

We follow Stevens’ formulation to estimate the MCI. We start with 
the estimation of the interest rate and exchange rate weights, respectively. 
Those weights are estimated from the following equation,

 (5.2.1)

Where y is output, r is the interest rate, e is the exchange rate (US dollars 
per peso). The coefficients, α, β are the interest rate and exchange rate’s 
weights, respectively. Equation (5.2.1) is a simplified version of a more 
general model that can include lags or other variables. The MCI, on the 
other hand, is defined as,

 (5.2.2)

To estimate equation (5.2.1) we use first differences of: Gross Domestic 
Product, nominal interest rates (29 days) and exchange rate2. We included 
two dummy variables to control for the decline in GDP in 1999 and 2013. 
The resulting weights were: α = -0.0193245; β = -0.0310272. We use the 
first quarter of 1997 as the reference period for both the interest rates and 
exchange rates. We obtained the following MCI, 

2. First difference of the exchange rates was estimated as e=ln(e)t - ln(e)t-1. Where e is the exchange 
rate (dollar per peso). 
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Figure 5.2.1
Mexico’s MCI, 1997-I-2022-IV 

Source: own estimates

Figure 5.2.1 shows the resulting MCI during the period 1997-I-2022-IV. 
Compared to 1997-I, the monetary conditions in the Mexican economy 
can be characterized as loose until 2001-III. After an initial short period of 
stringent monetary condition (2001-I-2005-I), the conditions remained 
stable with some fluctuations until 2015-I. Beginning 2015-I, monetary 
conditions were stringent until the pandemic. The last two years 2020-
2022, monetary conditions were somewhat looser. 

We estimate the cyclical component of this indicator to evaluate its 
relationship with the cyclical components of the index of physical volume 
of five Mexican States: Mexico City, Jalisco, Guerrero, Chihuahua, and 
Nuevo Leon. One might expect that the relationship between the cycli-
cal components of the MCI and economic activity may depend on the 
type of economic activity we are analyzing; thus, we use three indicators 
of economic activity, one for each economic sector: primary, secondary, 
and tertiary economic sector indexes. This will give us an idea about the 
type of relationship that there may be between monetary conditions and 
real sector. 

To illustrate the selection of parameters in the filter, Figure 5.2.2 
displays the quarterly Index of Physical Volume from 1997-I to 2022-IV 
of the Primary Sector for Mexico City, Secondary Sector for Jalisco, and 
Tertiary Sector for Guerrero. The data in Figures 5.2.1 and 5.2.2 shows 
non-linear behavior with no overall trend, and the concept of stochastic 
local trend seems better to describe the underlying dynamics of the trend, 
so we chose μ ≠ 0.
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Figure 5.2.2
Quarterly Index of Physical Volume from 1997-I to 2022-IV in the Primary Sector for 

Mexico City, Secondary Sector for Jalisco, and Tertiary Sector for Guerrero 

The suggested percentage of smoothness of 85% was used to select the 
smoothing parameter, based on Guerrero’s (2017) guideline, resulting in 
λ=43.05 for a sample size of N=104 quarters. The smoothness percent-
age was kept constant among the six series which would enable adequate 
trend comparison.

Figure 5.2.3 shows the UCS output displays trend estimates of the 
MCI, ĝ, (Graph 1), and cycle estimates (Graph 2). On the left side of the 
UCS tool, we selected the parameters to filter the series, we chose μ ≠ 0,  
a difference order (d) equals to 2, two standard deviations (SD) for the 
estimated error bands of the trend, noncorrelation, ρ=0, (see section 3.3), 
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and percentage of smoothing S%= 85%. Our results were downloaded in 
.csv format for additional analyses, by just pushing the top-right button 
(“Download results in .csv format”). We estimated the trend and cycle of 
the remaining series in a similar manner. 

Tables 5.2.1, 5.2.2. and 5.2.3 present the estimated cross correlations 
between the cyclical components of the MCI and the sectors’ index of 
physical volume for each of the five selected States. 

The results suggest that in general the secondary sector is countercy-
clical and lags between one quarter (Nuevo Leon and Jalisco), two quarters 
(Mexico City and Guerrero) and six quarters (Chihuahua), although in 
this latter case output seems to be procyclical. The evidence in the ter-
tiary sector points to a mixed relationship, i.e., it is procyclical for some 
states (Nuevo Leon, Jalisco, and Chihuahua), whereas is countercyclical 
in Mexico City and Guerrero. In this latter case, the economic activity 
lags the change in the MCI one quarter. An additional comment is that 
in the case of Nuevo Leon, Jalisco, and Chihuahua their tertiary sectors 
are antecede the change in MCI. 

In the case of the primary sector, the relationship between the sector 
and the MCI is interesting for in all five states the change in the primary 
sector antecedes the change in the MCI. Furthermore, we found evi-
dence that there is a positive relationship between the sector’s evolution 
and MCI (Jalisco, Chihuahua) and a negative relationship in states like 
Mexico City, Guerrero. 
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5.3. Case 3. The long-run evolution of oil prices

Energy producers and consumers often analyze the causes of price vola-
tility of oil, coal, and other resources. Producers are interested in price 
volatility for strategic planning and assessing investment decisions, such 
as resource exploration, reserve development, and production. Industrial 
consumers, like petrochemical companies or electric utilities, also share 
this interest because oil, coal, and natural gas are essential input costs that 
can influence investment choices. For instance, they may need to decide 
between building an oil- or coal-powered plant for an electric utility or 
selecting products to manufacture.

The growth rate of prices may reflect a depletion of resources or 
technological changes. Some may assume that prices will continue to grow 
from their current level, following a random walk with a drift. Others 
may assume that prices will revert to a trend line that either increases or 
decreases. This behavior would be consistent with the idea that the resource 
is produced and sold in a competitive market, so the price will eventually 
return to the long-run marginal cost. This cost is likely to change slowly, 
indicating that price shocks are temporary. Over a long enough period, 
prices are more likely to be mean-reverting rather than random.

In this example, we focus on oil prices. The literature on the sources 
of oil price fluctuations agrees on the role of global demand conditions.  
Elekdag & Laxton (2007), Elekdag et al. (2008), and Kilian (2008) empha-
size the importance of aggregate demand. Barsky & Kilian (2002) and 
Kilian (2009) argue that global demand played a significant role in the 
recent oil price episode and was also influenced by supply conditions. 
Hamilton (2009) mentioned that disruptions in crude oil production, 
caused mostly by geopolitical events, played a large part in determining 
oil price dynamics; additionally, he pointed out the role of speculation on 
the oil market as an extra source of volatility.

Based on the above discussion, numerous empirical studies have tried 
to understand the fluctuating nature of oil prices. Sadorsky (1999) sug-
gests that a stochastic trend should be taken into account due to the rise 
in the volatility of oil prices after the mid-1980s. Similarly, Morana (2001) 
demonstrates alternating periods of high volatility in oil price changes, 
which can best be analyzed using a stochastic local trend.

In this example, we use daily Brent oil spot prices ranging from January 
3, 2000- June 23, 2023. Throughout the day, the price of Brent crude in the 
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Spot market fluctuates due to various factors, such as geopolitical and eco-
nomic events and changes in supply and demand. It is worth noting that the 
daily prices published by the Energy Information Administration represent the 
market closing price, which is considered the day’s benchmark. The price of 
Brent crude is measured in dollars per barrel (USD/B) in the Spot market.

Figure 5.3.1 displays the plotted oil price level and its absolute rate of 
change. Two significant observations can be made. Firstly, the oil price level 
does not follow a global trend, and the concept of stochastic local trend 
seems better to describe the underlying dynamics of the oil price series. 
Secondly, the absolute rate of oil price change shows alternating periods 
of high volatility followed by relative tranquility. These two features are 
commonly found in speculative asset prices.

Therefore, we will examine how oil prices change over time by break-
ing them down into its trend and cycle components. The trend compo-
nent follows a stochastic trend with a drift as follows,

priceoil,t = trendoil,t + cycleoil.t

With a time series specification for the trend as:

Following Guerrero’s (2017) guideline, a smoothness percentage of 90% 
was set to select the corresponding smoothing parameter from the informa-
tion in Table 4.2.2. For a sample size of N= 6122 daily data, the smoothing 
parameter value is obtained from λ = 6122/(-0.366093+0.040246 * 6122) = 
24.9, as indicated in Table 4.2.2. Figure 5.3.2 Panel (a) shows the daily time 
series and its trend. Panel (b) exhibits the weekly time series and its trend, 
constructed from the daily data. It is important to note that this is a series 
of stocks, and the sample now comprises N=1224 weekly observations, 
considering five-day weeks. The smoothing constant for the weekly series 
is λ*

5 = 4.98 for S%=90%, as obtained from (4.3.8) by λ = 5λ*
5. Lastly, Panel 

(c) shows the monthly time series and its trend, also built from the daily 
data. The sample size for this series is N=281 observations, and the value 
of λ for monthly data is λ*

20 = 1.24 for S%=90%, obtained from (4.3.8) by 
λ = 20λ*

5. By visually inspecting Panels (a), (b), and (c), we can observe that 
the resulting trends with the same smoothness percentage display essentially 
the same dynamic behavior, regardless of the frequency of data observation.
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Figure 5.3.2. Panel (a), daily current prices and estimated trend with 
S%=90% (λ = 24.9), sample size N= 6122. Panel (b), weekly current prices 
and estimated trend with S%= 90% (λ

*
5 = 4.98, N=1224 observations. Panel 

(c), monthly current prices and estimated trend with S%= 90% (λ
*
20 = 1.24,  

N=281 observations.
In his analysis of oil prices between 2007 and 2008, Hamilton (2009) 

suggests that three factors played a significant role in shaping the dynamics 
of the market. Firstly, the global supply of crude oil was affected by the 
failed attempt to increase productive capacity between 2005 and 2007. 
The pressure in each oil field eventually reduces over time, leading to a 
decrease in production. Secondly, the demand for crude oil continued 
to increase globally, particularly in China, which went from importing 
800,000 barrels per day in 1998 to 3.7 million barrels in 2007. As a result, 
the market became imbalanced by 2007, leading to a significant reduc-
tion in crude oil inventories worldwide. Finally, ccording to Hamilton's 
research, a speculative bubble was formed during those years that eventu-
ally caused prices to skyrocket. In other words, speculation in financial 
markets was one of the reasons that led to the historical maximum price 
of oil. On the other hand, Masteres (2008) stated that the rise in price 
since 2007 was due to investors who started purchasing oil as a financial 
asset rather than a consumer good.

In early July 2008, oil prices reached their all-time high, but then they 
fell sharply to $40 per barrel in December of the same year. This was due 
to the global financial crisis, which caused a decrease in economic activity 
worldwide. As a result, oil demand also decreased significantly (opec, 2008).

According to Figure 5.3.2, the exponential filter accurately identifies 
the trend dynamics between 2007 and 2009. This is because during this 
period, there was a significant episode of price growth from February 
2007 to June 2008, followed by a period of falling prices from July 2008 
to February 2009. These findings are consistent with what we can observe 
in the historical price series.
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The drop in oil prices that occurred in mid-2014 is believed to be due 
to the advancements in oil production technology. The United States' oil 
supply grew significantly due to the development of hydraulic fracturing 
(fracking), enabling it to exploit vast reserves in Texas and New Mexico 
in the Permian Basin. This event is known as the fracking revolution (The 
usa Shale Oil Revolution). By 2014, crude oil production in the United 
States had increased by 80% compared to 2008 (Bordoff & Losz, 2015).

The exponential filter results suggest that from June 2014 to Decem-
ber 2015, the state of trend decline dominated the process. This trend's 
behavior is consistent with the information mentioned above.

In 2020, the price of crude oil fell considerably due to two primary 
reasons. Firstly, the covid-19 pandemic caused a reduction in economic 
activity worldwide. Secondly, a price war erupted between Russia and 
Saudi Arabia, as they could not agree on reducing the volume of crude 
oil produced. As a result, both countries increased their production, which 
led to a market flood and a subsequent price drop. The prices of various 
futures even reached negative values, indicating the lack of storage capacity 
and the urgent need to balance the market (Johnston, 2022). The exponen-
tial filter accurately recognizes the impact of the covid-19 pandemic on 
the market, as Figure 5.3.2 shows the oil trend price became dominated 
by falling prices from December 2019 to May 2020, consistent with the 
historical series of prices. The lowest price was recorded in March 2020.

To summarize, the exponential filter accurately represents the sig-
nificant events that have impacted the long-term trends in oil prices, 
regardless of the data's periodicity. For instance, during the price slump, 
we can observe that the trend reduced during the 2008 financial crisis, 
the emergence of fracking in 2014, the covid-19 pandemic, and the start 
of the Russian invasion of Ukraine. Graph 5.3.2 demonstrates that the 
trend estimated with the exponential filter encompasses all the relevant 
price drops since 2000. It also correctly describes the behavior of price 
stability and growth throughout the analysis period.
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Appendix
Technical details

Proofs of (3.1.8)

By applying GLS to (3.1.7) we obtain the following estimation equation.

We can solve for ĝ as follow.

where the smoothing parameter is defined as . 
The GLS estimator ĝ is unbiased, that is,
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Therefore, 

Proofs of (3.1.9)

The variance-covariance matrix of ĝ is given by
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Proof of (3.1.12)

To proof (3.1.12), first note that 

,

and define the residual vector as

 with 

and 

with
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This matrix has the important property of idempotency:

Moreover, M is a projection matrix, that is

            ,

therefore, the residual vector can be expressed as follows:

.

�  (A.1)

On the other hand, given that tr(AB)=tr(BA), where tr stands for the trace 
of a matrix, we have that

 (A.2)

Now, use (A.1), (A.2) and the fact that a scalar is its own trace to obtain:
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 � (A.3)

On the other hand, the generalized sum of squares can also be expressed 
as follows:
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�  (A.4)

Then, combining (A.3) and (A.4) we show that (3.1.12) is an unbiased 
estimator of .

Proof of (3.1.23)

This proof is completely based on the following work of Theil (1963).
Lemma: Let P and Q be two positive-definite or positive semi-definite 
matrices of size HxH and let Λ(P  P + Q) be a scalar function which mea-
sure the share of P in the matrix (P + Q)-1. Let us suppose that:
i.	
ii.	
iii.	  for all squared and nonsingular 

K-matrices.
iv.	  

with P1, Q1, P2 and Q2 positive-definite or positive semi-definite 
matrices, such that  and .

The only Λ which satisfies these four criteria is 

 (A.5)

Expression (3.1.23) is deduced from property (i) of Λ
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Proof of (3.3.2)

The noise component follows the AR(1) process
.

Although the time series is observed at time t = 1, the process is regarded 
as having started at some time in the remote past. Substituting repeatedly 
for lagged values of vt gives

 (A.6)

Now, since |ρ| ≤ 1, the component ρ J is negligible, since for J large, that 
is, as J → ∞, it effectively disappears and so if the process is regarded as 
having started at one point in the remote past, it is possible to write (A.6) 
in the form

 (A.7)

and, since summing the squared coefficients as a geometric progression 
yields 
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Therefore, 

Then, assuming =1, it follows that (3.3.2)

Proof of (4.3.8)

Without loss of generality assume µ* = 0 in (4.3.3) and from (4.3.4) it 
follows that 

 (A.8)

where  is the first order difference operator for the aggregated series, so 
that { } is represented by an Integrated Moving Average model of order 
(1,1) (IMA(1,1)), whose variance   and   and autocovariance   and   are given by

  and  

Similarly, assuming µ = 0 and d = 1 in (3.1.6) and from (3.1.5), the disag-
gregate series follows the IMA(1,1) model
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 (A.9)

whose variance γ0 and covariance γ1 are

   and  
 

To see how the two IMA(1,1) models (A.7) and (A.8) relate to each other, 
consider a time series of flows, that is, let

with .

Since
  then ,

so that
.

Then, as

,

it follows that 

 (A.10)

Now, for a stock time series, it is known that Y*
T-j = Yt - jk and *Y*

T = k Yt,  
then, from the previous derivation, it follows that

 (A.11)

Therefore, the autocovariance generating function of the disaggregated 
series γ(B) =  =-∞γ

jBj is given by

 (A.12)

where an upper bar denotes the corresponding polynomial with B 
replaced by B-1 (that is, k = (1-B-k).
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The values , ,  and  that make the results of both exponential 
filters to become equivalent are obtained by equating γ0

* and γ1
* to γ0 and 

γ
1k. That is, by solving the following system of equations

 (A.13)

Where a11,k and a21,k are the coefficients of B 0 and B k in the polynomial 
, for the flow time series or in the polynomial  for a stock time 

series. Similarly, a12,k and a22,k are the coefficient of B 0 and B k in the poly-
nomial , for a flow time series or in the polynomial  in the 
time series of stocks. System (A.12) has a unique solution for  and ,  
or for  and , depending on which pair of variances is known. If  
and  are known, so that λ*

k = /  is known, solving (A.13) yields

from which it follows that λ = /  is given by

 (A.14)

Now, since ,
, ,

and ,

where ,, ,  and , are polynomials in B and 
B-1 that have no powers of type Bik, for i = 0,1. By inspection of the poly-
nomials involved, it follows that for time series of flows, a11,k = (2k2+k)/3, 
a21,k = (k3 - k)/6, a12,k = 2kand a22,k = -k, whereas for a time series of stocks, 
a11,k = k, a21,k = 0, a12,k = 2 and a22,k = -1. Therefore, from (A.14) follows 
(4.3.9), so that
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