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Prologue

As the research journey progresses, tools and methodologies emerge that
revolutionize how we approach and understand real-world issues. This
book, through its range of non-parametric proposals, testifies to a pro-
gressive research development guided by Dr. Victor Guerrero’s strong
leadership. It embodies ideas that are increasingly adapted to the needs of
analysts and users of statistics.

Since 2007, the research presented here has evolved, adopting and
evolving innovative and complementary methodological approaches.
Nevertheless, what distinguishes this compendium is its accessibility.
Although deeply rooted in rigorous research, its approach is accessible
to doctoral students and those seeking a master’s degree, researchers, and
analysts. Thus, it is presented as an anteroom, an open invitation for those
who wish to dive deeper into time series smoothing issues.

One of the fundamental pillars of the work is the controlled univari-
ate smoothing technique, which is exploratory and allows estimations
with specificities for the estimation of trends with different orders of
differentiation, such as““d=1"and “d=2", and variants “with constant” and
“without constant”. The reader will discover how these techniques arise,
among other things, from the evaluation of business cycles. The authors
present detailed and valuable methods for determining crucial parameters
such as the ‘lambda’, and the impact this has on research.

A distinctive element is the approach to trend estimation. Although
there are problems at the extremes or “tails” in previous applications of the
proposals, this book proposes solutions to correct these deviations. More-
over, unlike other traditional techniques, such as X12-ARIMA, this book
provides tools to generate estimation intervals, giving the analyst a broader
and more nuanced perspective of their respective data and estimates.
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The book is also characterized by its intuitive part, by proposing
a computational tool programmed in free statistical software called R.
Some of the benefits of this tool include, for example, allowing analysts
to manipulate various parameters such as the order of differentiation,
the smoothing parameter, the width of the estimation intervals in real-
time. By accessing this online platform, the user can load time series and
experiment with different degrees of smoothing, visualizing the changes
immediately and gaining a deeper understanding of how these parameters
modify the results. In addition, a value added to what is proposed in the
book is that the techniques do not impose rigid distribution assump-
tions to estimate trends, thus offering a remarkable flexibility, especially
in data series of less than 500 observations. Through this work, the ideas
embodied in the time series smoothing problem proposed by Guerrero
(2007) are generalized. In this way, the book offers innovative and simple
ways to calculate trends, allowing the analyst to objectively choose the
desired smoothness to make possible comparisons between trends with
the same smoothness.

In conclusion, more than a simple collection of proposals, this book
is a window to the future of research. It invites the reader to enter, ques-
tion, and continue exploring, always with a reliable tool in hand and
the contributions of Dr.Victor Guerrero as a guide, accompanied by his
notable collaborators.

Maria Rosa Nieto Delfin
Research Professor,

School of Business and Economics
University Andhuac, Mexico
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Chapter1
Introduction

There is a wide agreement among specialists that a time series is made up
of different components and therefore that it can be decomposed. A con-
ventional decomposition considers that the observed series contains two
elements: trend (T) and cycles (C).Although there are proposals where the
series is composed of additional elements such as seasonality and irregular
components. There are several possible reasons why a researcher might
want to decompose a series. One of them may be that the researcher is
interested in analyzing the cyclical behavior of the series. Or, perhaps,
she wants to study the series’ long-term pattern so that she can do some
forecasting. Another possible motive is when the time series contains too
much noise that does not allow a clear analysis of the series. In this case, an
estimation of the series’ trend or cyclical behavior would help the analyst.

In general, any set of ordered and equally spaced observations (in
time, age, or any other dimension) could be filtered (or smoothed) to
see their underlying trend more clearly. Thus, data smoothing and trend
estimation are usually related when analyzing ordered and equally spaced
data. Throughout this book we use the term “Time Series” even when
the ordering does not correspond to time.

There are different theories and methodologies to decompose a time
series. The large majority are linear models that convert one time series
into another.The literature uses different names to describe this process of
transformation: to decompose, to filter, to smooth. All these terms, how-
ever, describe the process by which the original time series is decomposed
into its trend and cyclical components. Throughout this book, a filter is
defined by any operation on the observed series {y} that yields another
series, which in the present case will be the estimated trend {g;}. In other
words, a filtering procedure consists of applying a filter L on the observed

13



data yy, such that ¢r = Ly;. Since g¢ is a random variable, it would be prefer-
able to call g predictor rather than estimator. Nevertheless, we will employ
the usual terminology that uses estimation instead of prediction.

The predominant view in the literature considers the trend as the
component of the evolution of a persistent series that cannot be attributed
to observable factors. The univariate approaches reviewed in the literature
assume that the trend is either a deterministic or a random function of
time. When analyzing trends, it is common to use an unobserved com-
ponent model representation. This assumes that the observed time series
can be expressed as a signal-plus-noise model, that is,

}’t:gt+ Vt (11)

where for each value of t €[1,N], {g¢} represents the unobserved trend or
signal, which may be a random or deterministic function of time, while
{v¢} denotes the unobserved stationary noise (where a stationary series is
such that its mean, variance and covariance between two observations, are
constant along time) of the observed value of the series, {y¢}.

This decomposition has different meanings in different areas of
knowledge. In Experimental sciences, for example, vy is usually inter-
preted as a pure measurement error, so that the observed series {y;}, is
assumed to be the sum of the error term plus a signal {g¢}. In Actuarial
sciences, on the other hand, a researcher may use graduation to make the
observed data smoother, but she must ensure that the graduated values
maintain some degree of closeness to the original data. One of the most
critical tasks in Actuarial sciences is to describe the population’s actual but
unknown mortality pattern.

In Economics,if {y¢} represents Gross National Product (GNP), then
{v¢} 1s often interpreted as the stationary stochastic cycle or the cyclical
component of GNP, while {g¢} is the output’s trend. The Trend-Cycle
decomposition stems from the idea that total output is the sum of a
long-term growth and some stationary, temporary fluctuations around
its long-term trend. In Finance, the Efficient Market Hypothesis (EMH)
suggests that financial asset prices reflect all available information, mak-
ing future returns unpredictable. However, since the 1990s, many studies
have challenged this theory. One argument is that risk premiums vary
over time and depend on the business cycle (Cochrane, 2001). This means
that the returns of financial assets are related to slow-moving economic
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variables that exhibit cyclical patterns during the business cycle (Bruder
etal.,2011). Another argument is that some agents are not entirely ratio-
nal, which can result in asset prices underreacting in the short term but
overreacting in the long term (Hong & Stein, 1977). Hence, contrary
to the EMH, asset prices may exhibit trends and cycles. Assets” rate of
return may therefore be represented by the following expression, 1, = g,
+ ¢. Where 1, is the asset’s return rate, g, is the long-term return and ¢, is
the cyclical return rate.

Trend estimation has a long history and its methods have been
improving over time due to advancements in both computational tech-
niques and in statistical theory and methodology. There is a wide array of
methodologies, including nonparametric techniques -e.g., kernel models-,
local polynomial regression, high-, low- and band-pass filters, and wavelet
multiresolution analysis. Other approaches include semiparametric meth-
ods, -like splines and Gaussian random fields-, and parametric methods,
-like ARIMA (Auto-Regressive Integrated Moving Average) models,
Structural Time Series models (proposed by Harvey in 1989), the X-11
seasonal adjusted procedure (proposed by Cleveland and Tiao, 1976), and
the Hodrick and Prescott filter (Hodrick & Prescott, 1997).

Among these different methods to detrend time series, the Hodrick-
Prescott (HP) filter is one of the most popular ones. Its popularity is due to
the fact that it does not require applying a formal statistical model-building
process to estimate the trend, as it happens with ARIMA and Structural
Time Series models. The Penalized Least Squares (PLS) approach that
gives rise to the HP filter postulates that the trend must minimize the
function.

rr;itn{Z’t‘Ll(yt — g0 + A2V g)?} (1.2)

Where the symbol V(Nabla) is defined as the difference Vy, = y,- y.;.
When Nabla is raised to the second power it produces the second degree
difference equation V2, = y,- 2y, + y.,. That is why the second sum in
(1.2) goes from =3 to N.

Detrending (graduation) has two basic opposing characteristics:
smoothness and goodness of fit to the observed data. That is, the trend is
the result of the interaction between these two characteristics: to achieve
one, we must sacrifice the other. The first term of the equation penalizes
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the cyclic component, while the second penalizes the trend component’s
growth rate. In this context, A is a constant that penalizes the lack of
smoothness in the trend. As 1> 0 the fit of the trend is emphasized over
smoothness, so that g, > y, . The opposite occurs when A oo, in which case
the trend follows essentially the straight-line model V27, = 0. Hence A plays
a vital role in deciding the smoothness of the trend.

We argue that despite its popularity, the HP filter presents some draw-
backs that not all its users are aware of. In particular, the selection of A
becomes critical for the model’s smoothness and goodness of fit. To the
extent that it defines the trend and the cyclical behavior over time, the
entire analysis and conclusions depend on the proper selection of A.

The main objective of this book is to present a more general approach
to the time series smoothing problem suggested by Guerrero (2007). Our
goal is to present the ideas in a not so technical language and present
some examples using the proposed methodology. To achieve this goal, we
developed a friendly routine in “R” that anybody can use for free. This
routine will allow users to calibrate the smoothness of their time series
according to their interests.

Our approach introduces an index of smoothness as a tool for select-
ing the smoothing constant. The controlled smoothness approach, is pre-
sented as an alternative method for choosing the smoothing parameter
objectively. This technique involves estimating the trend of a time series
by fixing the desired percentage of smoothness and then determining
the A value that satisfies this criterion. This value must be consistently
employed with all time series to ensure valid comparisons. By fixing the
same amount of smoothness, the same estimated trend can be obtained
when the procedure is applied to another set of observations of the same
variable with fewer or more data points than the previous one.

Guerrero’s (2007) suggestion is like the interval estimation of a fixed
parameter O, with an expression like @ * xse(0), where se(6) is the stan-
dard error of @ and x a percentile of the appropriate distribution. In such
a case, it is customary to fix the desired confidence level instead of fixing
the value of the constant x on a priory grounds. This approach provides
a better statistical interpretation of the confidence interval and greater
comparability with other intervals. By fixing the desired percentage of
smoothness of the trend estimator, the same benefits can be achieved for
estimating the trend.

16



Furthermore, the length of the time series does not significantly
impact the estimated trend if the smoothness is controlled. This is a valu-
able property when estimating trends routinely since trend revisions are
minimized when more data are required. This property makes the method
ideal for practical applications. Additionally, it is possible to compare esti-
mated trends of time series for different variables, even with different sam-
ple sizes and periodicity of data, just by using the same level of smoothness.
This 1s like fixing the confidence level of multiple confidence intervals in
order to make valid comparisons. What is important is to keep the same
setting of the percentage of smoothness.

Let us present some examples of how our proposed methodology
differs from conventional detrending techniques. Figure 1.1 presents the
logarithm of the quarterly remittance flows received by the Mexican State
named Jalisco during the period 2003-I - 2022-IV.We compare the trend
component obtained from applying the seasonal adjustment program
X-12 ARIMA-SEATS (Panel a) to the one obtained from using the HP
filter, using the standard smoothing parameter A = 1600 for quarterly data
(Panel b). Panels (c) and (d), on the other hand, show the trend estimated
using A = 1 and 2 = 199, respectively. We can see that the smoothness of
the trend is quite similar in cases (a) and (c), but noticeably different in
the other two cases. Therefore, to adequately estimate the trend, we must
select the appropriate value for the constant A in an objective manner.
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When analyzing quarterly data using the HP filter, it is generally
accepted to use the value A = 1600. This value was initially proposed
by Hodrick and Prescott based on the assumption that Vg, and v, were
independent random variables with a normal distribution N(0, 62) and
N(O, o2), respectively. They determined that the appropriate values for o,
and o, for the US macroeconomic series they were studying were 5 and
1/8, respectively, resulting in a value of 67/02 = 1600.They also tested the
results with other values of 4, including 400, 6400, and o0, and found that
only with A = oo did the estimated trend change significantly. Therefore,
the value of A= 1600 became the consensus for the smoothing constant
when using the HP filter for quarterly data.

However, consensus disappears when other frequencies of observa-
tions are used. For example, for annual data, authors like Baxter & King
(1999) recommended the value 1= 10, while Backus & Kehoe (1992),
Giorno et al. (1995) and the European Central Bank (2000) used the value
A= 100. Regarding monthly data, Dolado et al. (1993) used A = 4800,
while the econometric software E-views uses the default value 1= 14400.

Many researchers have suggested statistical methods to estimate the
smoothing constant, ), in various situations, as discussed in literature. Kohn
et al. (1992) looked at a regression function with ARMA errors, while
Lee (2003) compared multiple methods for selecting A via Monte Carlo
simulation. However, it is crucial to note that these methods are compu-
tationally complex and lack interpretation for the numerical value of 1. As
such, they may not be suitable for estimating time series trends routinely
and on a large scale.

To take a rigorous statistical approach, one needs to formulate a model,
estimate its parameters (including 1), and ensure that the assumptions
underlying it are valid. Harvey & Jager (1993) proposed a structural time
series model that employs maximum likelihood estimation. However, this
approach may not be suitable for large-scale applications, even with modern
computers and fast algorithms, as it requires an explicit statistical model.

On the other hand, Young (1994), Pedersen (2001), and Kaiser &
Maravall (2001) took a difterent approach for choosing the smoothing
constant. They analyze the results produced by different values of A, and
used this information to select the most appropriate value. They looked at
the effects of 1in the frequency domain and provided criteria for choos-
ing it correctly. This ensures that the HP filter can eliminate cycles with
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a periodicity that is less than the minimum value required for accurate
business cycle analysis.

Regarding the so-called automatic methods to choose the smoothing
constant, A, they are: CrossValidation, Generalized CrossValidation (Craven
& Wahba, 1979), Akaike”s Information Criteria (Hurvich et al., 1998), and
the Bayesian Information Criteria (Schwarz, 1978) all of them are in the
context of cubic smoothing splines. These methods determine the value
of A by optimizing a function that depends on the smoothing parameter.
Unfortunately, in the presence of high positive correlation in the noise
component of model (1.1), standard smoothing parameter selectors fail to
work and overfit the data (Krivobokova & Kauermann, 2007).

This book is structured as follows. In Chapter 2, the basic time series
concepts are reviewed to ensure the book is self-contained. Chapter 3
discusses the time series smoothing problem more generally than usual.
Section 3.1 presents the problem of smoothing time series of any order
of integration, and the estimation method used is Penalized Least Squares.
An index of smoothness is deduced and suggested as a tool for selecting
the smoothing constant. Section 3.2 covers a general version of the filter
for a time series with an integration order of two and uncorrelated noise
in the model of the unobserved component. Section 3.3 studies the effect
of autocorrelation on the smoothness of the trend when the noise follows
an autoregressive process of order one. Chapter 4 presents the case of a
time series whose integration order is one, in which case the estimated
trend employs the exponential smoothing filter.

Chapter 5 presents three examples of how the proposed filter can be
used in the analysis of trend and cyclical components of economic and
financial time series.

While there is a fair amount of notation included, the book strives to
maintain a narrative and informal writing style. Only brief and essential
proofs are presented formally within the text, while longer and more
technical proofs are located in the Appendix for optional study.
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Chapter 2
Some Basic Concepts

In this chapter we provide an overview of essential concepts and results
that facilitate the understanding of the suggested approach to smoothing
time series. Those familiar with this material can skip the respective sec-
tion or read sub-headings for specific details.

2.1. Matrix Algebra

Definitions

An (nxm) matrix, denoted by an upper bold letter, is an array of numbers
ordered into n rows and m columns.

a1 A9 e A

A _ @21 Q22 .. dom
(nxm) — .

An1 Qnz2 - Anum

If there is only one column (m=1), then A is described a column vector,
whereas if there is only one row (n=1), then A is called a row vector. If the
number of rows equals the number of columns (n=m), the matrix is said to
be square. The diagonal running through a, dx, ..., ayy in a square matrix
is called the principal diagonal. If all elements oft the principal diagonal
are zero, the matrix is said to be diagonal. A matrix is sometimes specified
by describing the element in row i and column jas 4 = [q; ].
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Summation and multiplication

Two (nxm) matrices are added element by element as follows,

a1 Az e Am bi1 bz . bim
a1 Qzz .. Ay + byy byy ... bym
An1 Qnz - Qnm bnl bnz bnm
An1 +bp1 Apa +bpy . Apm + by

or, more compactly
A + Beuxem) = [aij + byj]
The product of an (nxm) matrix and an (mxq) matrix is an (1xq) matrix.
Axm)XB mxq) = Cnxq)

where the row i, column j element of C is given by 2= a,b;. Notice that
multiplication requires that the number of columns of A be the same as
the number of rows of B.

To multiply A by a scalar a, each element of A is multiplied by a

a'A(nxm) = C(nxm)

with
C= [aaij]

Identity matrix

The identity matrix of order n, denoted I,,1s an (nxn) matrix with 1s along
the principal diagonal and 0s elsewhere.
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1 0 0
0 1 0
Iy =
0 0 1

For an (nxn) matrix A :A x I, = A and also, I,x A = A.
Power of matrices

For an (nxn) matrix A, the expression A* denotes AxA. The expression
A*indicates the matrix A multiplied by itself k times. A" is interpreted as
the (nxn) identity matrix. A is said to be idempotent if AxA = A.

Transposition

The transpose of matrix A, written A" is the (mxn) matrix whose
rows contain the elements of the columns of A. Let a; denote the row
i, column j element of matrix A, that is, A =[q,], the transpose of A4 is
given by A" =[a;]. A square matrix A satistying A = A" is said to be
symmetric. Transposition of sum and product is governed by the rules:
(A+B)’= A"+B’"; (AxB)’= B'xA".

Trace of a matrix

The sum of the diagonal elements of a square matrix A is called the trace
of A, written tr(A).That is, tr(A) = a;;+ax+...+a,,. For square matrices 4
and B, tr(A+B)= tr(A)+ tr(B), whereas if A is (nxm) and B is (mx#), then
AxB is an (nxn) matrix whose trace is

m m m n m
tT(AXB) = z aljbjl + z azjbjz + -+ Z anjb]-n = z Z akjb]-k
j=1 j=1 j=1 k=1 j=1

The product BxA is an (mxm) matrix whose trace is

n
2. b

k=1

Mz

n n n
tr(BxA4) = Z bigap, + z byray, + -+ z bk akm =
k=1 k=1 k=1 i

1l
N
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Thus,

tr(AxB) = tr(BxA)
Matrix inversion

The inverse of a square matrix A, when it exists, is the (nxn) matrix
denoted A! such that AxA™ = A'xA = I,. A matrix whose inverse exists
is called nonsingular. The rules for inverting products and transposes are:
(AxB)' = B'xA"'and (A")"' = (A4")".

To give a rule for computing the inverse of a matrix requires the
definition of the determinant of a square matrix 4, usually denoted |A]|.
This is a scalar quantity that is calculated from the elements of A as fol-
lows. Let A denote an (nxn) matrix and 4, be the (n-1)x(n-1) matrix that
results from deleting row j and column i of A.The adjoint of A is the (nxn)
matrix whose row i, column j element is given by (-1)""/| A |. Therefore,
if the determinant of 4 is not equal to zero, its inverse exists and is found
by dividing the adjoint by the determinant:

1

A=
4]

(—D |4y

Positive definite matrices

An (nxn) real symmetric matrix 4 is said to be positive semidefinite if for

any real nonzero (nx1) vector x,x "Ax > 0.We make the stronger statement

that A 1s positive definite if x"Ax > 0.

o Lemma 2.1.11f A (nxn) is symmetric and positive definite, A is sym-
metric and positive definite.

o Lemma 2.1.2.1f A (nxn) is symmetric and positive definite, there exists
a nonsingular matrix P (nxn) such that PAP* = I, and P'P = A
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2.2. Generalized Least Squares

A general multiple linear regression considers the following model,
Y=XB+¢ E(g]X) =0, Var(e|X) = E(gg’) = 02Q (2.2.1)

In these equations, Y represent an (nx1) column vector, X is an (nxk)

matrix, B 1s a (kx 1) vector of parameters, € is a vector of order (nx1) called

the disturbance or error term, and € is a symmetric and positive defi-
nite (nxn) matrix. This model allows for the errors to be heteroskedastic,
autocorrelated or both.

* IfQis diagonal with non-constant diagonal elements, the errors terms
are uncorrelated, but they are heteroskedastic.

* IfQis not diagonal (Cov(e;, &) = Q;; # 0 for some i # j) and the diagonal
elements are constant, then the errors are autocorrelated and homo-
skedastic.

* IfQ is not diagonal and the diagonal elements are no constant, then
the errors are autocorrelated and heteroskedastic.

It is well known that under the following assumptions:
Assumption 2.2.1. E(g|X) = 0
Assumption 2.2.2. Var(€|X) = E(e€’|X) = oI,

Assumption 2.2.3. rank(X) = k

the Gauss-Markov theorem holds and states that the Ordinary Least
Squares (OLS) estimator Bors is the Best Linear Unbiased Estimators

(BLUE) of .
If OLS is used when Var(e|X) = E(gg") = 62Q # d2l,, B is still
unbiased, that is, since the OLS estimator can be expressed as
Bois = (X'X)~'XY
then,
E(Bows|X) = B+ (X'X)"'XE(e|X) = B

but
Var(Bos|X) = E[(X'X) "' X ee’ X(X'X)™!] = o2(X'X) ' X' QX(X'X)™' # o2(X'X)*
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Since Var(Bo.s|X) # 02(X'X)™, statistical inferences based on the follow-
ing assumptions,

Var(Bows) = 6Zp,s(X’X) ™"

_ & o1s8oLs _ (Y - XBOLS),(Y - XBOLS)

~2
a. =
EOLS n—k n—=k

are invalid since, in general g2, is a biased and inconsistent estimator of
a2, consequently Var(Bo.s|X) is also biased and inconsistent.

In other words, the OLS estimators are unbiased and consistent, but
their variance estimators are biased and inconsistent, leading to incorrect
statistical inference results.

To demonstrate how to handle these cases, assume € is known. By
applying Lemmas 2.1 and 2.2, we can factorize Q' = P’P. Multiplying
both sides of (2.2.1) by P yields a linear relation between transformed data,
with the same parameter vector but a transformed error vector:

PY = PXB + Pe (2.2.2)

Note the properties,
E(Pe|X) = PE(g]X) =0

now, by using lemma 2.2.1 and the properties of inverting and transposing
matrix products, we can deduce the following:

Var(Pe|X) = E(Pee’P|X) = PE(ge’'|X)P’ = 62PQP’ = g2P(Q"1)71P
= g2P(P'P) 1P = g2PP~'P'P = ¢?I,

Hence, the transformed regression satisfies Assumptions 2.2.1 and 2.2.2.
The OLS estimators from the regression of PY on PX are:

Bois = X'P'PX)T'X'P'PY = (X'Q7'X)7'X'Q7'Y (2.2.3)

This method is called Generalized Least Squares (GLS). By construction,
since the conditions of the Gauss-Markov theorem have been induced to
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hold by the transformation, it produces estimators that are BLUE for this
model. Nevertheless, GLS is not a feasible estimator as it requires knowl-
edge of (), which is usually not available. However, the formula provides
the basis for various feasible procedures involving estimates of €.

The BeLs is unbiased.

E(BeusIX) = E[(X'Q71X) 71X Q71Y|X] = E[(X'Q71X) ' X' Q"1 (XB + &) |X]
=B+ XOQ X)X QE(e|X) =B
The GLS variance-covariance matrix is:

Var(Bes|X) = 02(X'P'PX)™t = o2(X'Q71X)™1

with an estimator of 62, given by

., (PY—PXB,5) (PY — PXBsrs) (Y —XBgus) P'P(Y — XBoys)
% = n—k - n—k

_ (Y - XﬁcLs)'Q_l(Y - XEGLS)
- n—k

2.3. Time Series

Time series data refer to observations on a variable that occurs in a time
sequence; usually, the observations are equally spaced in time. A time series
model provides a convenient, simple, probabilistic description of a process
of interest. In this section, we will describe the class of models known
as Auto-Regressive Moving Average (ARMA). Further details of these
models can be found in the textbook by Guerrero (2009).

2.3.1. The backshift operator

The backshift operator, B, plays a useful role in carrying out algebraic
manipulations in time series analysis. It is defined by the transformation.

By = yi-1 (2.3.1)
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Applying B to y. yields By., = y.,. Substituting in (2.3.1) gives
B(By,) = B*y, = y,» and 50, in general,

Blys =y, j=12,....(2.3.2)
To complete the definition, let B” have the property By, = y, so that (2.3.2)

holds for all non-negative integers.
Let V = 1 - B denotes the difference operator, such that,

VY =y, Yy = yi- vV = V(Vy) = V(yi- y1) = yi- 2y + yp and so
on.Therefore, Viy, denotes the dth order difference of {y,}, with d a non-
negative integer.

If y, is a deterministic linear trend, as in y, = a + bt, then

Vy, = yt—yt_l=(a+bt)—(a+b(t—1)):b

In general, it can be seen that V? will reduce a polynomial of degree d to
a constant.

2.3.2. ARMA model
The non-seasonal ARMA(p,q) model can be written as
¢p(3)3/'t =0y + 0,(B)a; (2.3.3)
where O, is a constant term
¢p(B) = (1= ¢1B — $2B% — - — ¢ B)
is the pth-order autoregressive (AR) operator, and

6,(B)=(1—-6,B—60,B> —---—0,B1)

is the gth-order moving average (MA) operator.

30



The variable g, in equation (2.3.3) is the random shock term, also some-
times called the innovation term, which is assumed to be independent
over time and normally distributed with mean 0 and variance gZ.

The ARMA model can also be written as

Ve =00+ G1Ye1 + P2Ye2 + o+ GpYip — 010i-1 — P20; 2 + -+ 0ga;_g

2.3.2.1. Stationarity and Invertibility

If p = 0, the model is a pure MA model, and y, is always stationary. An
ARMA model with p > 0 AR terms is stationary if all roots of the poly-
nomial in B @,(B) lie outside the unit circle. If ¢ = 0, the ARMA model
is pure AR, and y, 1s always invertible. An ARMA model with ¢ > 0 MA
terms is invertible if all roots of @,(B) lie outside the unit circle.

2.3.2.2. Model mean
The mean of a stationary AR (p) model is derived as

E(y,) = E(eo + P1Ye-1 + G2Yi2 + o+ PpYip + at)
=E(6y) + }1E(Ye-1) + P2E(Ye-2) + -+ $pE(ye—p) + E(ay)

=0+ (Pp1+ P+ + PEWL)

_ 6o
P1—p2——p

Because E(6,a,,) = 0 for any k, it is easy to show that this same expression
also gives the mean of a stationary ARMA (p,q) model.

2.3.2.3. Model variance

There is no simple general expression for the variance of a stationary
ARMA (p,q) model. There are, however, simple formulas for the variance
of the AR (p) and MA(q) models.
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The variance of the AR (p) model is:

a3

D1P1 — D202 — - — DpPyp

Yo =0y =Var(y) = E(¥?) =
where ¥ =y, — E(y,) and py,..., p, are autocorrelations (see below)
The variance of the MA(q) model is:

Yo =0f =Var(y,) = EG?) = (1 + 6% + -+ 02)0?

2.3.2.4. Model autocorrelation function
The model autocorrelations

_ Vi _ Cov(ye, Ye-x) _ E(@eFe-r) —12
Yo Var(y,) Var(y,)’ "

Pk

are the theoretical correlations between observations separated by k time
periods. This autocorrelation function, where the correlation between
observations separated by k time periods is a constant, is defined only for
stationary time series. The true autocorrelation function depends on the
underlying model and the parameters of the model. Standard expectation
operations can derive the covariances and variances needed to compute
the autocorrelation function. The formulas are simple for pure AR and

pure MA models. The formulas become more complicated for mixed
ARMA models.

2.3.2.5. The AR(1) process
The variable y, follows an AR (1) process if
Ye=¢ye1+a, fort=12,..,Nandy, =a;,where|p| <1

Although the time series is observed at time t = 1, the process is regarded
as having started at some time in the remote past. Substituting repeatedly
for lagged values of y, gives

J-1

Ye = Z dlac; + My (2.3.4)

j=0
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Now, since |@|<1 the component & is negligible if j is large As j » o0, it
effectively disappears and so if the process is regarded as having started
at one point in the remote past, it is possible to write (2.3.4) in the form

Ve = Z Pla;, t=12,..,N,.(235)
=0

and, since summing the squared coefficients as a geometric progression
yields

[oe]

> ¢ =1/0-¢%)

Jj=0

Therefore,

EG) =) $E(e;) =0,
=0

2
7 =EQ) = E (Z ¢fat_,-> =02 ) ¢ = 0/(1-¢7)

j=0 j=0

Y(k) = EQeYesi) = 02 PIpFH | = otk ) ¢Y =aZ¢p*/(1-¢?) k=12,..
DTS
and
Vi

pr =K =gk k=01,..
k ,yo

=¢kLk=0,+1,+2, ..
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2.4. Filtering Time series

In the model

Xt = z ViVi-j

Jj=—0

the collection of {y;} is called a linear filter. Clearly, x, is a linear func-
tion of y, and a filtered version of y,. Linear filtering, where 7; is a known
collection of numbers, is often used to identify patterns and signals in a
noisy time series (in this case, y,). The weights 7; could be found in such
a way as to capture the relevant variation associated with the particular
component of interest. Thus, a filter for the trend would capture the varia-
tion related to the long-run term movement of the series, and a filter for
the seasonal component would capture the variation of a seasonal nature.
A filter designed in this way, with a prior choice of the weights, is an “ad
hoc” fixed filter in the sense that it is independent of the particular series
to which it is going to be applied.

Over time, the use of ad hoc filtering has shown severe limitations.
One major drawback is its fixed nature, which can lead to spurious results,
and for some series, the component may be overestimated, while for oth-
ers, it may be underestimated. To overcome this limitation, an alternative
approach is suggested in this book.
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Chapter 3
Trend Estimation of Univariate Time
Series with Controlled Smoothness

3.1. Time series smoothing through Penalized Least Squares

This chapter heavily draws on the work of Guerrero (2007, 2008) and
Guerrero et al. (2010, 2018).

When conducting statistical analysis of time series, it is natural for the
trend concept to arise. This is because the trend of a time series serves as
a descriptive measure equivalent to the centrality measure of a data set.
However, it is essential to note that the center of a time series behaves
dynamically, and analysts often need to distinguish between short-term
and long-term movements. The common notion of trend is that it reflects
the long-term behavior of an underlying component of the observed time
series and evolves smoothly. To extract information from observed data
about concepts such as permanent income or potential output, smooth-
ing procedures are regularly applied. Economic theories frequently use
empirically unobservable concepts like expectations and equilibrium vari-
ables. The results provide stylized facts about business cycles (Kydland
& Prescott 1990, Bjornland 2000), or they are used as artificial data in
econometric analysis; for example, permanent income explains private
consumption, and the output gap serves as an explanatory variable in a
Phillips type equation for the dynamics of inflation.

As stated in the introduction, it 1s common to use an unobserved
component model representation when analyzing trends. This model
assumes that the observed time series can be expressed as a signal-plus-
noise model, not because the data was actually generated this way, but to
account for the patterns found in the data.That is,

y=g+v 3.1.1)
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where for each value of ¢ ranging from 1 to N, {g,} represents the unob-
served trend or signal, which may be a random or deterministic function
of time, and {v,} refers to the unobserved stationary noise present in the
observed value of the series being studied, denoted as {y,}. Researchers in
fields like economics, demography, and finance have being employing this
type of representation for some time. In an early use of (3.1.1), Whittaker
(1923) and Henderson (1924) suggested to smooth (graduate) actuarial
data by solving the following Penalized Least Squares (PLS) problem for
u=0and A > 0.PLS produces a method that minimizes a sum of squares
function that considers fidelity to the original data, plus a penalty for
the lack of smoothness on the trend. The penalty is given by the sum
of squared differences of order d of the trend, weighted by a smoothing
parameter () that trades off smoothness against goodness of fit, as follows:

N N
min {Em —g* 42 ) (Vig.- u)Z} (612
t=1

t=d+1

Here, y denotes the mean, if exists, or just a reference level for {V?g, }, where
V =1 - B denotes the difference operator and B is the backshift operator
such that Bg, = g, for every subindex t. Therefore, V¢g, denotes the dth
order difference of {gt}, with d a nonnegative integer. That is, V', = g,
Ve =9-9.1,V¢=V(Vg) =V(g-g.1) =g -2+ g,and so on,in such
a way that the second term of (3.1.2) is related to the smoothness of ge.
The parameter A > 0 is a constant that penalizes the lack of smooth-
ness in the trend. That is, as 1> 0, the trend resembles more closely the
original data, so that g, > y, for all ¢, and no smoothness is achieved. The
opposite occurs when A+ oo, in which case the trend follows essentially the
(smooth) polynomial implied by V*g; = u . Thus, in the latter case, when d
= 0, the trend will be constant, that is, g, = y and when d > 1 the trend will
be given by the polynomial g, = B, + fit + ...+ Bt '+ (u/d!)t', where the
constants f;, for i = 0,1,...,d - 1 depend on the d values of {¢,}. Therefore,
assuming g = 0 has implications on the degree of the polynomial.
Intuitively, the minimization problem has two opposing forces. One
force attempting to minimize the sum of squared cyclical noise. The
other force is attempting to minimize the sum of squared V¢g, — p. The
smoothing parameter A, gives relative weight to these two forces.
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The value of d in (3.1.2) is usually chosen by the analyst on a priori
grounds as d = 2, and seldom is d > 3 used in practice. When y = 0 and
d = 1 or 2, the corresponding solution to the minimization problem
is well-known in the financial and economic literature. They are called
exponential smoothing and Hodrick-Prescott (HP) filtering, respectively.

For the y = 0 and d = 2 case, several approaches lead to stochas-
tic models generally used to represent trends of economic time series.
They are based on:a) Auto-Regressive Integrated Moving Average mod-
els (ARIMA); b) Structural Time Series Models, as proposed by Harvey
(1989); ¢) The X-11 Seasonal Adjustment procedure (Cleveland & Tiao,
1976);and d) the HP filter (Hodrick & Prescott, 1997).The general model
form employed is V1, = (1 - 6, B - 6,B%a,, where the parameters 6,
and 6, are constant and {a,} is a white noise Gaussian process, that is, a
sequence of independent and identically distributed random errors with
normal distribution.

3.1.1. A statistical solution

The minimization problem discussed in (3.1.2) is more general than the
typical problem studied in the literature, as it does not assume p to be
zero beforehand. However, a solution for g = 0 1s available in Kitagawa &
Gersch (1996), where they approached it through a least squares computa-
tional perspective. King & Rebelo (1993) also obtained the same solution
using optimal linear filtering tools. In this book, we propose estimating
a random vector to develop a statistical solution and derive an index
of smoothness. Therefore, we consider the following tentative statistical
model for {g,}, which is similar to the one used by Hodrick & Prescott
(1997) or Kitagawa & Gersch (1996).

Vig.=pu+¢ fort=d+1,..,N(3.1.3)

With {g} a sequence of serially uncorrelated and identically distributed
random errors with mean zero and Var(e) = o2

Now, define the following arrays: Y = (Y, Y5,...,YN), € = (g1, -, 9n)”
and v = (v, v3, ..., vn)  are Nx1 vectors; € = (g1, £2,-.-, €y) and

1w = (1,1,...,1)" are N-dx1 vectors (from now on, a prime “is used to
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denote the transpose of a vector or matrix). And K, is the matrix repre-
sentation of the difference operator V¢, so that,

kq Oy-a-1\ (3.1.4)

Kd — 0 kd 0N—d—Z

Oy-d-1 k,

is an (N-d)xN matrix, with k, the 1x(d+1) vector given by
ko= (04 (4) 0 ()0 (8).(9))

dy__a . . . A .
Where (l) = u-pr 1s the binomial coefficient, and Om is the Ixm zero
vector. Thus, the vector of observed data Y can be expressed as

Y=g+, (3.15)
where the trend component is given, for g known, by
Kig =ply_q+ & (3.1.6)

Therefore, combining (3.1.5) and (3.1.6) we have the system of equations:

(le—d) = (Ilgi)g + (_"S) (3.1.7)

The following assumptions will be made throughout the book: (i) the
matrix (,I(’Z) has column rank N, (ii) the random vectors v and € have zero
mean vector with positive definite Variance-Covariance matrices and are
uncorrelated, that is, E(v) = 0y, Var(v) = o2V, E(€) = 0y, Var(e) = 021y
and E(v"¢) = 0, with 17 a known positive definite matrix. It follows from
assumptions (i) and (ii) that the vector mean and the Variance-Covariance
matrix of the combined error vector in (3.1.7) are
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B(") = 0ma sna ver (%) =)o -] = (7 o) -

Where the matrix £ is positive definite. Therefore, there exists a matrix
P such that,

P’P=Q"'and PQP’ = I,

Now, by using the matrix P, (3.1.7) can be expressed as follows:

Pluny-) =7 ()o+ P ()

E[P (%)) = PE[(Zo)] = 0an-a

and

E[P (_vs) v —e)P|=POP =1y,

Then, by applying Least-Squares we obtain the following estimation equa-
tion.

-1

o7 Vnxn 0Nx(N—d)> ( Y )

Iy Ky’
(N d)( M]-N—d

Owv-axny  02In-a

-1
05 Vnxn  Onxov—a) (IN) ~
K,) 9

=N’ Kd,) (

Ov-ayxny  0ZIn—a

where ¢ is the resulting estimator of the trend g. The unbiased estimator
for the trend and its respective MSE are:
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9 = (Vixw + AKyKg) ™ (VynY + ApKg 1y _4) (3.1.8)

I =Var(g) = o7 (Vyxw + AKa K™ (3.1 9)

A proof of these results is provided in the Appendix.

The proposed model can incorporate several possible statistical and/
or economic modeling assumptions. For instance, taking y = 0, Reeves et
al. (2000) consider a diagonal matrix I/ with non constant variance 0.2,
for t = 1,2, ..., N.Then, the resulting estimated trend corresponds to a
time-varying smoothing parameter A,. The matrix 7 could also be used
to account for the presence of cycles in the observed component by
considering that {v,} is a stationary and invertible ARMA(p,q) process.
Harvey (1985) and Harvey & Jaeger (1993) suggest specifying p=2, which
allows the cycle process to be periodic in the sense of having a peak in its
spectral density function. These are examples of how to incorporate prior
information about the economy’s structure. A case that will be considered
in Section 3.3 is an ARMAC(1,0), that is an AR(1) stationary process for
the {v,} component.

A feasible trend estimator must consider that p is commonly unknown
and must be estimated from the data. Thus, an unbiased estimator of g is
given by the sample mean of {V4y, }, that is,

Ztta+1 VYe (3.1.10)

i=(N—d) "1 y_g4K;¥ = ,
f=( ) N-allq N —d

therefore, (3.1.8) becomes,
9 = (Viin + 2K Ka) 7 (Vi Y + AKa 1y —at) (3.1.11)
= (Vyxn + AKa'Kg) 7' (Vg + AKg 1y_q(N — d) "1 y_qK,Y)

= (Vysw + AKa'Kg) ™' (Vyy + AN — d) 7 Ky 1y_ g1 y_qKq)Y

Further, to measure variability around the estimated series {g} we need
to estimate oy in (3.1.9). Then, under assumptions (i) and (ii), an unbiased
estimator of o2 is given by
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& = [YViinY — §' (Vs + AKa'K2) G/ (N — d) + Au?® (3.1.12)

The proof is provided in the Appendix.

To appreciate the effect of the constant g, it is essential to note the
following remarks. (i) By wrongly assuming y = 0, the variance o,” will be
underestimated by an amount that grows as 4y, (ii) We should notice that
the array K 15, is an N-dimensional vector of zeros, except for the first
d and last d elements, that is, when d > 1 and given that 3¢ (-1)! (‘f) =0
we have,

d d d—-1 0
1 = Y 0 (G Y 0 (0,003 0 (8 y ()
i=d i=1 i=0 i=0

Therefore, the observed values of the original series {Y;} enter the for-
mula of the estimator § modified in both of its extremes by the value of
u, weighted by A. (i1i) It is worth reminding that when extrapolating the
trend, g = O implies the trend follows a polynomial of degree d. In con-
trast, g = O implies a polynomial of degree d-1. Besides, the extrapolated
values will depend critically on the least d estimated trend values. That is,
let g\(h) be the h-period ahead forecast of gy, with origin at N, then for
h > 1 we get gn(h)=p if d=0, gn(h)=hp+gy if d=1, and gy(h)=[h(h+1)/2]
pt(h+1)gn-hgn 1f d=2.

3..2. A measure of smoothness

To apply the proposed method in practice, deciding the value of the
smoothing parameter A is the only thing that is required. By looking
at the precision matrix of ¢, I' in (3.1.9), we see that it is composed by
two precision matrices, 0,21\, associated with expression (3.1.5) for
the observations, and ¢,2K;’ K} associated with expression (3.1.6) for the
smooth component of the series. Measuring the precision contributed
by the smooth component to the total precision is now interesting. This
amounts to deriving a scalar measure to quantify the share of 6.,2K;' K in
(3.9). Such a measure is given by the following expression.

Ao72Ky Ky T) = 1 —tr[Vik Vil + 2K, 'Kz)"1]/N (3.1.13)
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In the Appendix, it is demonstrated that equation (3.1.13) possesses the
following characteristics: (1) symmetry; (2) values ranging from zero to
one; (3) invariance under linear nonsingular transformations of the vari-
able concerned;and (4) linear behavior.

This index evaluates the precision of the smoothness component in
relation to the total precision. It can be expressed as a percentage to rep-

resent the degree of smoothness in the estimated trend, when multiplied
by 100%.The higher the index, the smoother the trend.

3.2. Penalized Least Squares of second-order integrated
processes with percentage of smoothness chosen by the user

As previously mentioned, analysts typically choose the value of d in equa-
tion (3.1.2) to be d < 2, and rarely d > 3 in practice. When g = 0 and
d = 2, the solution to the minimization problem is known as the Hodrick-
Prescott (HP) filter, which is commonly used to estimate trends and
detrend economic time series. However, the HP filter has been criticized
for its endpoint sensitivity, generation of spurious cycles, and arbitrariness
in the choice of the smoothing parameter 1. This section presents a slightly
more general solution by considering y = 0.

3.2.1. Trend representation and estimation

The penalized approach that gives rise to the HP filter postulates that the
trend must minimize the function.

N N
ny;n{Z(yt — g +1) (g, —u)Z} (3.2.1)
t=1 t=3

Asin (3.1.2),1 is a constant that penalizes the lack of smoothness in the
trend. That is,as 1> 0 the trend resembles more closely the original data, so
that g, > y, for all ¢,and no smoothness is achieved. Conversely, when 1 oo,
the trend follows the smooth polynomial model 7, - 27, ;, + 7, , = g which
represents the trend growth expressed as a second difference. Therefore, A
plays a crucial role in determining the smoothness, while y is a reference
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level for the trend growth. It is important to note that the trend follows a
second-degree polynomial given by this equation

ge = Bo + But + (u/2)t?

which becomes a straight line when g = 0.Thus, using g = 0 as is usual in
practice has important consequences on the trend behavior, particularly
at the endpoint of the time series, as will be seen below.

Therefore, for d = 2,y # 0 and non-autocorrelated noise component,

that is Var(y) = o2, (3.1.8), (3.1.9), (3.1.11) and (3.1.12) becomes.
9= Uy +2AKK) T (Y + Ak 1y _5) (3.2.2)
It =Var(®) = o7 (Iy + 1K;’K;) ™! (3.2.3)
9=Uy+2AK"K) ™ (Iy + AN —2) 'K, 1y_, 1y, K,)Y (3.2.4)

& =[Y'Y =g (y + 2K;'K;)g]/ (N — 2) + Au* (3.2.5)

where K, is the (IN-2)xN matrix representation of the second difference
operator appearing on the above formulas

It is important to note that the estimator &7 was obtained assuming that
¢ was a known parameter, even though it actually needs to be estimated.
Therefore, when replacing § with , it is necessary to adjust (3.2.5) accord-
ingly. In such a scenario, the suggested estimator would be: 2 = (N - 2)
G2/(N-2-1),that is.

N N
6; = lZ(Yt — g%+ AZ(Vzgt - )2
t=1 t=3

/ (N —3) (3.2.6)
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In order to understand the impact of the constant g, it is important to
note that the array K, 15, in equation (3.2.2) is a vector of zeros with
dimension N, except for the first two and last two elements. This means
that K,'1,, = (1,1,0,...,0,1,1)". As a result, the values observed in the
original series {y,} are included in the formula for the estimator ¢, which
is adjusted at both extremes by the value of y and weighted by A. Equa-
tion (3.2.2) shows that the smoother matrix (I\+AK,'K,)™! is applied to
Y+MK o= On + ALy, + AL Y3, o, Yne2 Yn-1 + A Yy + A ). By
doing this, the filter adjusts the first and last two values of the series with
the aim of reducing end-point bias.

It is widely acknowledged that when data is revised or new obser-
vations are made, all previously estimated trend values will change. The
HP filter has been criticized for being too sensitive at the actual end of
the sample, which makes it difficult to interpret the estimated trend. This
is particularly problematic for policy applications that focus on current
development (see for example, Mohr 2001). A more comprehensive solu-
tion was proposed by Guerrero (2007) (3.2), where g = 0 helps to correct
the end-point sensitivity.

3.2.2. Choosing the smoothing parameter to achieve some desired
percentage of smoothness

The smoothness index (3.1.13) for the non-autocorrelated case becomes.
S(A,N) =1—tr[(Iy+ AK',K,)"Y]/N (3.2.7)

In order to measure the level of precision attributed to the trend smooth-
ness induced by model (3.1.6) for d=2, it is recommended to use (3.2.7) as
a smoothness index. It is important to note that this index only relies on
the values of  and N, as K, remains constant. It is worth mentioning that
since K, is a matrix of rank N-2, the matrix K’,K; has two eigenvalues of
zero, while the remaining N-2 eigenvalues can be arranged in descending
order as e; > e, > ... > exn. Thus, the trace in (3.2.7) can be expressed as:

tr(ly + AK',K) P =1 +2e)™ + ..o+ (1+2e,,) 1 +2

and it can be observed that S(A,N)> 0 as A>0 and S, N)> 1-2/N as 1> co.
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This means that no matter how large the value of  is, the trend will
never achieve 100% smoothness. However, the larger the sample size (N),
the smoother the trend can be.To express the index in terms of percentage,
we can write S(A,N)% to indicate the percentage of smoothness achieved
by the filter.We must specify the smoothness S(A,N)% and determine the
corresponding A for fixed values of N. It is important to note that there is
no analytical solution for A from expression (3.2.7), so it cannot be calcu-
lated directly. Instead, the calculations are done numerically from (3.2.7)
while keeping N and S(A,N)% fixed.

The chart in Figure 3.2.1 displays how S(1, N)% behaves for various
values of N and A. Figure 3.2.1 (a) depicts that S(1, N)% increases rapidly
as A grows, but then slows down considerably around A =1000, regardless
of the sample size. On the other hand, Figure 3.2.1 (b) demonstrates how
the sample size affects the results for fixed A values, which were the same
ones used by Hodrick and Prescott (1997). In all three cases depicted in
each graph, the percentage of smoothness is greater than 90%, even when
the sample size is as small as N=50 or the smoothing constant is as small
as A =400.
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Regrettably, it is impossible to derive an analytical expression for A as a
function of N and $% from equation (3.2.7). Consequently, Table 3.2.1
presents values of 1 for various sample sizes and percentages of smoothness.
These values were obtained numerically by solving equation (3.2.7) for
A based on the given N and S%.
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Table 3.2.2 offers a useful tool for selecting A in practical applications with
sample sizes greater than 120 quarters. The table shows a parsimonious
function of N that provides a reliable estimate of A, based on the results of
estimating a function that approximates the A values produced by (3.2.7).
The coefficients of determination (R?) for the estimated simple linear
regression model I63(A) = B, + Bi(1/N) are also provided in the table, all
of which are very close to unity. This function gives a close approxima-
tion to the true value of A, making it a handy resource for simplifying the
selection process.

Table 3.2.2
Estimation of an approximating function that relates

Ato S9 and N, N > 120 (quarterly series)

Approximating function: A = Exp(60 + 6, 1/N)
S% 8, 8, 100R*%
60% -ON3914 8210552 99951
70% 0908608 12.324897 99924
72.5% 1.221603 13.888427 9991
75% 1.567039 15.79M37 99.89
77.5% 1951985 18170203 99.88
80% 2.385697 21.217659 99.85
82.5% 2880539 25.265800 99.80
85% 3.453495 30918669 99.72
87.5% 4127088 39.477104 99.55
90% 4205282 102.804613 95.23
92.5% 5.847323 87131279 8972
95% 61M3325 67069052 99.83

3.2.3. A simulation exercise

To test the effectiveness of the suggested approach, a simulation exercise
was conducted. Three dynamic behaviors were analyzed, two nonlinear
ones and one linear. The first nonlinear series simulated the trend function
as a specific instance of a piecewise function with the following expression.

ag + Bot +yot?,  t=1,..,m
9c = a1+ﬁ1t+y0t25 t=n1+1,...,n2
ay + Bt +yot?, t=n;+1,..,N
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The selection of parameters a;'s and f;’s is such that we get smooth joints.
That is, a.y + Bn; + yon? = a; + pn; + yon?, for i = 1,2. The function
specification was decided in order for the trend model implied V27, =
to resemble the behavior of an observed time series. Therefore,

vzgt = 2]/0’ t = 1, Ny, Ny + 3, ey, N, Ny + 3, ...,N

=2yt (a1 —ap) + (ny + (B —Po), t=ny+1
=0 + (ag — 1) + ny(Bo — 1), t=n+2
=2yt (a—a)) +(y + DB —B1), t=np+1

=2yo + (a1 — az) + ny(By — B2), t=n,+2

Thus, V2g: = 2¥, except for the discontinuity points located at the obser-
vations t=mn, + 1,n, + 2,0, + 1, n, + 2.

The second nonlinear time series was also defined as piecewise linear
having the expression.

ag+LPot, t=1,..,m
a+pit, t=n+1,..,n,
a, +ft, t=n,+1,..,n;3
az;+f3t, t=n3+1,..,n
a,+Pst, t=n,+1,..,N

gt =

The selection of intercepts a’s is such that we get smooth joints. That is
a + By = agq + Piani, for i = 1, .., 3. The function specification was
decided for the trend model implied by Vg, = 0 to resemble the behavior
of an observed time series. Therefore
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Vig, =0, t=1,..,n,n +3,..,1,n, +3,..,n3,n3 +3,...,14,14 + 3, ..., N

= (a1 — @) + (g + D(B1 — Bo)s t=m +1

= —(a; — ap) —n1(B1 — Bo), t=mny+2
= (ay —a1) + (ny + (B, — 1), t=n,+1
= —(az — 1) =1(B2 = B), t=mny+2
= (a3 —ay) + (n3 + 1Bz — B2), t=nz3+1
=—(az —az) —nz(Bz — B2), t=nz+2
= (ay—az) + (ng + 1By — B3), t=n,+1
= —(ay — a3) —ny(By — B3), t=n3+2

Thus, V2g, = 0 except for the discontinuity points located at the observa-
tionst=mn +1,m +2,nm+1,n,+2,n+1,n3+2,n,+1,n +2.The
parameters of the nonlinear models are specified in Table 3.2.3.

Table 3.2.3

Parameter values for the nonlinear trends

) N =120 2.4 @ = 5o =04
Nonlinear, A — You "y a =818, B =232
T a, =180.36, B, = 3.6
Bo=8/N as = 0.030
N =120 B =-5/N a=2738
Nonlinear, =25 n,=77 B.=5/N a, =-0178
ns = 40, n, = 100 Bs=-2/N as = 4.487
B:=8/N a, - - 3845

The linear function for the trend is g, = 1 + 6¢/N,for t = 1,2, ..., N.

In Figure 3.2.2, there are three simulated series that are based on the
parameters described earlier. The theoretical and trend estimates for these
series are shown with different smoothing levels. The smoothing indices
used are obtained from Table 3.2.1. The dotted lines represent the true
trends. Panels (a) and (b) show the nonlinear time series estimated trends,
while panel (c) displays the linear time series estimated trends.
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After analyzing the results achieved with difterent levels of smoothness, we
can provide some guidance on selecting a suitable degree of smoothness
in situations where the trend behavior can be identified visually. Guerrero
et al. (2017) derived some guidelines based on a simulation study, which
can help determine an appropriate percentage of smoothness. Therefore,
we recommend the following:

i.  if'the original series behaves as a straight line, choose a large value of
100S@,N)%, starting from 92.5 to 95 % for N > 48, and increase it
from 95 to 97.5 % for values of N > 100;

ii. when the series shows a non-straight-line pattern, the percentage of
smoothness should start at 80 to 85% for N > 48, and increase it from
85 to 90 % for values of N > 100.

Let us use an example to illustrate the guidelines presented by Guerrero et
al. (2017). In Figure 3.2.2, we see a simulated series with a sample size of
N=120. For Nonlinear, (Panel (a)), a suggested percentage of smoothness
of 85% corresponds to a smoothing constant of A =41.60. For Nonlinear,
(Panel (b)), a suggested percentage of smoothness of 90% corresponds to
a smoothing constant of A =227.92, while for the linear series (Panel (c)),
a suggested percentage of smoothness of 95% corresponds to a smoothing
constant of A =5212.65. All these constants can be found in Table 3.2.1.
Figure 3.2.3 shows the same simulated series as Figure 3.2.2, but with the
suggested smoothness percentages and theoretical trends with +2 standard
error bands centered at §. The standard errors are calculated by taking the
square root of the diagonal elements of lar(g) (see equation (3.2.3)).

The Univariate Controlled Smoothing (UCS) web-tool, developed
by us, displays trend estimates, g, (Graph 1) and Cycle estimates (Graph
2) once data in .csv format for univariate time series (with or without
header) have been uploaded.To the left of the UCS tool, the analyst selects
parameters related to the filter she wants to use, such as: i) whether the
constant (y) is null or not, (ii) difference order (d) (1 or 2); (iii) number of
standard deviations (SD) for the interval estimates (0, =1, 2 or £3); (iv)
Correlation (p) (-1,1) (see,section 3.3); (v) the selected length of data (by
default N, although it could be modified); and (vi) smoothing percentage,
S%, (0.2,0.9833).

The steps to estimate the trend, cycle, and error bands were the fol-
lowing. First, we chose and uploaded the data to be analyzed and explore
its trend behavior visually. In this case, the Nonlinear; simulated series
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was selected. Two significant observations can be made: (i) the Nonlinear,
series does not follow a global trend, and the concept of stochastic local
trend seems better to describe the underlying dynamics of the trend, so
we chose y = 0; (ii) the series shows a non-straight-line pattern. Second,
tollowing Guerrero’s (2017) guideline, a suggested smoothness percentage
of 85% was set to select the corresponding smoothing parameter, which,
for a sample size of N=120), corresponds to A=41.60; d=2, p=0, and two
standard deviations for the bands, were also selected. After configuring the
parameters, Graph 1 (Figure 3.2.2(a)) displays the estimated trend (¢) with
+2 standard error bands in the UCS output, while Graph 2 illustrates the
estimated cycle component (y,- ¢,). Finally, once the analyst has finished,
the results can be downloaded in .csv format for additional analyses, by
just pushing the top-right button (“Download results in .csv format”).

We estimated the trend of the series Nonlinear, and linear in similar
manner.
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It is clear from Figure 3.2.2 that the estimated trend based on Guer-
rero’s (2017) guidelines provides the most accurate approximation of the
theoretical trend compared to all other estimated trends. The smoothness
recommended by Guerrero’s guideline is particularly effective.

3.2.3.1. Same time series with different sample sizes

It is important to note that trends with the same level of smoothness can
be compared even if the sample sizes are different. To illustrate this, let
us look at the examples in Figure 3.2.4 (Nonlinear,), where trends were
estimated for the same series with varying sample sizes. The A values used
for 85% smoothness were: 41.60 for N=120, 44.00 for N=96, 48.48 for
N=72,59.13 for N=48,and 87.47 for N=30. From Figure 3.2.4, we can
see that the trend estimates are reasonably similar, especially when the
sample sizes are comparable.

65



SIIETTISO UMO 192IN0S

$31195 UDBUNUON Pale|nwWis 8y} 10} s8zZIs a|dwies JuaIalip PUe SSBUYIO0WS %SG Y)IM s81ewilse puall pa1os|es

y'z°¢ 2unSi4

66



We conducted a similar analysis with the HP filter. However, we kept the
smoothing parameter A = 1600 constant across all sample sizes. Despite
criticisms of the HP filter for generating spurious cycles and the ad hoc
selection of the smoothing parameter without considering sample size, we
found that the trends estimates were not comparable. By fixing A = 1600,
we observed 93.56% smoothness for N=120, 93.35% for N=96, 93% for
N=72,92.31% for N=48, and 91.06 for N=30, as shown in Figure 3.2.5.
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Figure 3.2.6 confirms that the trend remains relatively stable despite
changes in sample size and a fixed percentage of smoothness. The trend
values show only a slight shift when we zoom in on the central observa-
tions of the 120 original observations. However, the central 35 observa-
tions show a larger difference due to structural changes that occurred
in observations 40 and 77.The 2 values used for 85% smoothness were:
A =74.96 for N=35,=51.97 for N=61,and A = 44.69 for N=91.
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Based on the examples above, we can see that when we set the same
specific percentage for the smoothness of a trend for each series being
studied, we will obtain almost the same estimated trend when we apply
the same procedure to another time series of the same variable but with
more or fewer data points compared to the previous one. Moreover, we
can accurately compare the estimated trend of time series for different
variables, even with different sample sizes, by using the same amount of
smoothness. This is similar to fixing the confidence level of various con-
fidence intervals to ensure valid comparisons.

Therefore, the estimated trend will not be significantly impacted by
the length of the time series if we control smoothness. This is beneficial
when estimating trends on a massive scale, as trend revisions can be mini-
mized when more data are acquired. The key is to maintain a constant
percentage of smoothness.

3.3. Penalized Least Squares of second-order integrated
processes with the percentage of smoothness chosen by the
user in the presence of noise autocorrelation

It is widely known that the accuracy and smoothness of the trend compo-
nent in smoothing techniques depend largely on the chosen smoothing
parameter value, which varies for each technique. To avoid the need for
trial-and-error parameter selection, several data-driven methods have been
developed to assist researchers. However, if the presence of autocorrela-
tion in the noise component is ignored, commonly used automatic tuning
parameter selection methods such as Cross Validation (CV), Generalized
Cross Validation (GCV) (Craven & Wahba, 1979), Akaike’s Information
Criterion (AIC) (Akaike, 1973), corrected Akaike’s Information Criterion
(Hurvich et al. 1988), and Bayesian Information Criterion (BIC) (Schwarz,
1978) among others, fail to work and could cause overfitting of the data.
According to Krivobokova & Kauermann’s (2007), smoothing with
correlated errors is a significant issue in time series settings, such as mac-
roeconomic time series. Their study, which focused on penalized splines
for autocorrelated data, assumes a normal error distribution and uses
Restricted Maximum Likelihood (REML) to estimate the smoothing
parameter. Through simulations, they demonstrated that REMLs smooth-
ing parameter choice is more reliable than automatic methods and that
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moderate autocorrelation structures do not result in over or under-
adjustment. The study also considers problem (3.1.1), which deals with
both trend adjustment to the data and trend smoothness. Over (under)-
adjustment occurs when an inadequate low (high) value of A results in
less (more) weight than necessary on smoothness. The authors assume
an autoregressive structure of order 1, or AR (1), for the errors with an
autocorrelation coefficient between 0.0 and 0.4.

Krivobokova & Kauermann’s (2007) research on smoothness sug-
gests that accurately estimating trends is possible when adjustments are
not excessive or insufficient, even if there is moderate misspecification of
autocorrelation. However, their simulation study only considered autocor-
relations ranging from 0O to 0.4.

To avoid overfitting, it’s best to consider the correlation structure
when selecting a smoothing parameter. This means taking into account
the variance-covariance matrix of the noise component (Var(v) = o2 1),
which can help to account for correlated noise. In this section, we use the
smoothness index to study and measure the effect of first-order autocor-
related noise and choose a smoothing parameter accordingly.

3.3.1. Smoothing parameter selection in presence of autocorrelation

The smoothing index for AR (1) noise can be derived by utilizing model
(3.1.5)-(3.1.6) to represent the univariate time series. It is important to
note that the vector v is assumed to be a function of the N-dimensional
vector of serially uncorrelated errors v = (vy,...,vy)” in this particular case,
that is

Vi =pve_1+ ¢ fort=1,2,..,Nandv, = {;,where |p| <1

(3.3.1)
with

E(v) = 0y, Var(v) = oly, EW{)=0 and E((&) =0.

Besides, the variance-covariance matrix is of the form (see Appendix)
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1 ,0 pN—Z
Var(v) = o2V = P 1 P (332
1-—p?
pN—l pN—Z 1

Then, the index of smoothness (3.1.13) that takes into account the pres-
ence of the AR (1) autocorrelation becomes

S, p,N) =1 —tr[V1(V~! + K, 'K;)"]/N (3.3.3)

3.3.2. The impact of smoothness on the trend when the errors follow an

AR(1) model

To assess the impact of model misspecification or correlated noise (v)
on the sensitivity of the smoothing level, we obtained various values of
S@,p,N) as explained in (3.3.3) under different scenarios. Tables 3.3.1,
3.3.2,3.3.3,3.3.4 and 3.3.5 demonstrate the changes in the smoothness
index by fixing the value of A to achieve 70%, 80%, 82.5%, 85%, 87.5%,
90%, 92.5%, and 95% of smoothness for sample sizes of 20, 50, 100, 200,
300, and 500 and p values of -0.9, -0.8, -0.6,-0.2, 0.0, 0.2, 0.4, 0.6, 0.8,
and 0.9. Since (3.3.3) relies on N, A, and p, we first fixed the number of
observations and then set the smoothness percentage (S%) assuming no
autocorrelation (p = 0). After that, we calculated the value of A correspond-
ing to those indices. However, as mentioned before, there is no analytical
solution for A from (3.3.3), and therefore, it cannot be calculated directly.
Therefore, the calculations were performed numerically from (3.3.3) by
keeping the values of p = 0, N,and $% fixed. Finally, with the 1 value fixed,
we calculated the corresponding smoothness index directly from (3.3.3)
for the different values of p.
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Table 3.3

So% values as a function of A for N=20 and different values of p

A
P 4.663 32.561 66.318 159.669 511.974 49999999999
-09 0.652 0760 0790 0.821 0853 0900
08 0.657 0764 0793 0823 0855 0899
06 0.669 0773 0801 0.829 0.859 0.899
0.4 0.679 0781 0.808 0836 0.864 0900
02 0.690 0790 0816 0842 0869 0900
00 0700 0.800 0825 0.850 0.875 0900
0.2 0708 0.809 0833 0.857 0880 0.899
o4 0716 0.819 0842 0865 0885 0899
0.6 0721 0.829 0.852 0.873 0880 0900
08 0721 0839 0.861 0.880 0893 0900
09 0718 0842 0865 0883 0.894 0899
Table 3.3.2
S% values as a function of A for N=50 and different values of p
A
F 3163 | 16.468 | 29.201 | 57.697 | 132.991 | 388.642 | 1721.221 | 19871.323
09 | 0644 0749 0779 0809 | 0840 0873 0906 0939
-08 | 0651 0755 0783 0813 0844 0875 0907 0940
-0.6 0.664 0765 0.793 0.822 0.851 0.881 o9m 0942
04 | 0677 0777 0803 | 0830 0.858 0.887 0915 0945
02 | 0689 0788 0814 0.840 0.883 0.893 0920 0947
00 | 0700 | 0800 | 0825 0.850 0875 0900 0925 0950
02 | 0709 081 0.836 0.860 0.883 0907 0930 0952
0.4 0716 0.824 0.848 0.871 0893 0915 0935 0954
06 | o720 0836 0860 0.883 0904 0924 0942 0957
08 0719 0.847 0.873 0.896 0916 0934 0950 0958
09 0714 0.851 0878 0902 0923 0940 0953 0950
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Table 3.3.3

S% values as a function of A for N=100 and different values of p

f 2.812 13.506 23m 43.505 | 93.519 | 244.872 | 887.692 | 6132.677
09 | 064 0746 0775 0.805 0836 0868 0901 0935
08 | 0648 o751 0780 0810 0840 0872 0904 0936
06 | 0662 0763 0791 0.819 0.848 0878 0908 0939
04 | 0676 0775 0.801 0829 0856 0885 0913 0943
02 | 0688 0787 0813 0839 0865 0892 0919 0946
0.0 070 0.80 0825 0.850 0.875 0900 0925 0950
02 | 0709 0812 0837 0.861 0885 0908 0931 0953
o4 | oné 0825 0849 0873 0895 0917 0938 0958
06 | 0720 0837 0863 0886 0908 0927 0946 0963
08 o717 0849 0876 0900 0921 0940 0956 0970
09 o712 0852 0881 0907 0929 0947 0962 0974

Table 3.3.4
S% values as a function of A for N=200 and different values of p

P 2.657 12.287 | 20.684 | 38.092 | 79.384 | 198.265 | 662.841 | 6132.677
09 | 0640 0744 0773 0803 0834 0.866 0899 0933
08| 0647 0750 0778 0808 0838 0870 0902 0935
06| 0662 0762 0789 0818 0847 0876 0907 0938
04| 0675 0774 0.801 0.828 0855 0884 0912 0942
02| 0688 0787 0801 0838 0865 0.891 0918 0945
oo | o70 080 0825 0.850 0875 0900 0925 0950
02 | 0709 0812 0.837 0.861 0885 0908 0931 0954
o4 | oné 0825 0850 0874 0897 0918 0939 0959
0.6 0.719 0.838 0.864 0.888 0909 0929 0948 0965
o8 | o7n6é 0.850 0877 0902 0924 0943 0959 0973
09 foval 0853 0883 0909 0931 0950 0966 0978
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Table 3.3.5

S% values as a function of 1 for N=300 and different values of p

f 2.608 1.914 19.950 | 36.483 | 75.288 | 185.273 | 603.786 | 3321.041
09 | 0639 0743 0772 0.802 0833 0866 0899 0932
08 | 0647 0749 0778 0807 0838 0869 0901 0934
06 | 0662 0762 0789 0817 0846 0876 0906 0937
04 | 0675 0774 0800 0827 0855 0883 0912 0941
02 | 0688 0787 0812 0838 0865 0891 0918 0945
0.0 070 080 0.825 0850 0875 0900 0925 0950
02 | 0709 0813 0837 0861 0885 0909 0932 0954
0.4 0716 0826 0851 0874 0897 0919 0939 0960
06 0719 0839 0864 0.888 0910 0930 0949 0966
08 0716 0.850 0878 0903 0925 0944 0960 0974
09 0710 0853 0883 0909 0932 0951 0967 0979

Table 3.3.6
S% values as a function of A for N=500 and different values of p

P 2.570 11.626 19.387 | 35.259 | 72.205 | 175.651 | 561.489 | 2969.306
09 | 0639 0743 0772 0802 0833 0865 0.898 0932
-08 | 0647 0749 0777 0807 0837 0869 0901 0933
06 | 0661 0761 0789 0817 0846 0.876 0906 0937
04 | 0675 0774 0800 0827 0855 0883 0912 0941
02 | 0688 0787 0812 0838 0864 0891 0918 0945
0.0 070 080 0.825 0.850 0875 0900 0925 0950
02 | 0709 0813 0837 0.862 0.885 0909 0932 0954
0.4 0716 0826 0851 0874 0897 0919 0940 0960
0.6 0719 0839 0865 0.888 0910 0931 0949 0966
08 0716 0850 0878 0903 0925 0944 0961 0975
09 o710 0853 0883 0910 0933 0952 0968 0980

Based on the above tables, it can be generally observed that when there
are negative autocorrelations, the smoothness achieved with the A value
corresponding to p equal to zero decreases as p becomes more negative,
but increases as p becomes more positive. Additionally, when the values of

p become more negative, there is a decrease in the percentage of smooth-

ness as NN increases; whereas for increasing values of p, the percentage of
smoothness grows as N increases.
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3.3.3. A graphical analysis

We now use the simulated series Nonlinear, and Nonlinear, from the sim-
ulation study in section 3.2, but now with autocorrelated noises. It is
important to note that both series contain N=120 observations, and the
errors are now of type AR(1) with autocorrelation coeflicients of +0.4
and +0.9.To smooth out the two simulated time series (with and without
autocorrelation), we used PLS with autocorrelated smoothness. Following
Guerrero’s (2017) guideline, we set the percentage of smoothness to 85%
and 90% to choose the appropriate smoothing parameters based on the
assumptions of p = 0 and p = 0, as determined by equation (3.3.3).
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In the above-mentioned Figures 3.3.1, 3.3.2, 3.3.3, and 3.3.4, it can be
observed that the estimated trends with and without autocorrelation are
quite similar when the autocorrelation is +0.4 and -0.9. Additionally, when
a high percentage of smoothness is considered for the trend estimation,
panels (a), (b),and (d) of these figures indicate that the estimated trends with
or without autocorrelation, came closer to the theoretical trend.

When the autocorrelation is positive and high (p=0.9), it can cause
major problems. Panel (c) of Figures 3.3.1,3.3.2,3.3.3, and 3.3.4 shows
that regardless of whether autocorrelation is considered or not, the esti-
mated trend is far from the theoretical trend. The simulated series poorly
represents the theoretical behavior, as it lies far from the theoretical trend
in those figures. This has nothing to do with the estimated one.Therefore,
it is suggested to avoid using this type of trend when there is a large posi-
tive autocorrelation in the noise component.
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Chapter 4

Penalized Least Squares to first-order
integrated processes with percentage
of smoothness chosen by the user

It is commonly accepted that the efficient market hypothesis states that
financial asset prices reflect all available information (Fama, 1970). This
suggests that future returns cannot be predicted. However, since the 1990s,
many researchers have challenged this hypothesis. They argue that risk
premiums change over time and depend on the business cycle. Financial
asset returns are linked to slow-moving economic variables that follow
cyclical patterns according to the business cycle. Another reason to reject
the efficient market hypothesis is that some agents are not entirely rational.
This means that prices may underreact in the short term but overreact in
the long run (Hong & Stein, 1977). Behavioral finance theory (Barberis
& Thaler, 2002) can explain this phenomenon.

It is widely accepted that prices can demonstrate trends or cycles, as
supported by the above two arguments. Financial time series are often
assumed to behave as a random walk, or an integrated of order 1 (I(1))
process. Studies, such as Baillie & Bollerslev (1989), have shown that
currency exchange rates against the US dollar behave as random walks.
Additionally, Narayan & Smyth’s (2005) study found that stock prices of
OECD countries should be considered I(1) processes. Tsay’s (2002) con-
ventional model for prices also uses a random walk with drift. As such,
the random walk model is crucial in financial time series. To decompose
a financial time series into trend and noise, we opted for the exponential
smoothing (ES) filter instead of the HP filter, aligning with the idea of
consistency with the random walk model.
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4.. Statistical description of the exponential filter

The penalized approach that gives raise to the Exponential Filter (ES)
postulates that the trend must minimize the function.

N N
"“l]l;n IZ(}% - g%+ AZ(gt —gt-1— #)2} (4.1.1)
t=1 t=2

As in (3.1.2) and (3.2.1),4 > 0 is a constant that penalizes the lack of
smoothness in the trend.That is,as A » O the trend resembles more closely
the original data, so that g, > y, for all £,and no smoothness is achieved.The
opposite occurs when A » oo, in which case the trend follows essentially
the (smooth) polynomial model g, - ¢, = g, which represents the trend
growth component. As previously mentioned, A has a significant impact
on determining the smoothness, while y serves as a reference level for the
trend growth. It is important to note that the trend follows a first-degree
polynomial, which can be expressed as:

9 = Bo + ut n#0,(4.1.2)

which becomes a constant when gy = 0, so that using this reference level,
as 1s usual in practice has important consequences on the trend behavior,
particularly at the endpoints of the series, as discussed below.

Therefore, for d=1, y # 0 and Var(v) = 071, (3.1.8), (3.1.9), (3.1.11)
and (3.1.12) becomes.

g = (IN + AK]_,Kl)_l(Y + A#Kl,lN—l) (413)
I =Var(@) = o;(Iy + AK,'K;) ™' (4.1.4)
g = (IN + AKllKl)_l(IN + ){,(N - 1)_1K1,1N_11,N_1K1)Y (415)
& =YY =g Iy + 2K 'K)GI/(N — 1) + u? (4.1.6)

where K, is the (IN-1)xN matrix representation of the first difference
operator appearing on the above formulas
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And (3.2.6) becomes

52 =

i(Yt —g0*+ Ai(vgt - 7| /v -2) (4.1.8)
t=1 t=2

As in the case d = 2, to appreciate the effect of the constant g, it should
be noticed that the array K15, appearing in (4.1.3) is an N-dimen-
sional vector of zeros, except for the first and the last element, that is,
Ki'14,=(1,0,0,...,0,0,1)’. Therefore, the observed values of the original
series {y,} enter the formula of the estimator ¢ modified in both of its
extremes by the value of y, weighted by A. That 1s, (4.1.3) indicates applying
the smoother matrix (INtAK ' K))™!' to YHAUK, 1= (1140, Y25 V3see s Vs
yn-1, YntAp), by doing this, the filter adjust the first and the last values of
the series by means of Ay.

When analyzing daily financial data, there is typically a large number
of observations compared to quarterly data analysis. As a result, calculating
g using (4.1.3) or (4.1.5) requires an NxN matrix inversion, which can
lead to instability and imprecise solutions for large N. While the penal-
ized approach clearly demonstrates the impact of 4, it is not an efficient
calculation method.

To simplify the estimation procedure for the ES filter, we can rewrite
the underlying minimization problem in a state-space form. This cast-
ing allows us to utilize the Kalman filter for parameter estimation with
smoothing.

Kalman filtering requires the formulation of a state space model
which in its general form has quite a few components: unobservable
states, observable data, shocks and mapping matrices. The model is writing
in the following form:

Xt = AtXt—l + Zt + FtWt (419)
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Yt = Gt + Ct,Xt + Vt (4110)

The X,s are the (unobservable) state variables, Y; are the observable data.
(4.1.9) is known as the state equation while (4.1.10) is known as the
measurement equation. The Z, if present, are exogenous variables in the
evolution of the state. The W, are shocks to the states; the F, matrix has
the loadings from those shocks to states. The €t are any components in
the description of the observable data which depend upon exogenous
variables. The V, are measurement errors. The W, and V, are assumed to be
mean zero, normally distributed, independent across time and independent
of each other at time f as well. For the ES filter, the model takes the form:

XC:g' At:1, thﬂ, Ft=1,Wt=£t andCt=1,§t=0,V}=Vt

with Var(e) = 62 and Var(v) = o2.Thus, the state and measurement equa-
tions for the ES filter are:

gt = ge—1 +u+& andY, = g, + v,

Besides, A is given by the variance ratio ¢2/a2.Thus, to equate the results
of the Kalman filter to those obtained with (4.1.3) or (4.1.5), it is assumed
that 62 = 1 and g2 = 1.

It’s important to note that financial series may have missing values
during holidays. However, we can still determine the trend using the avail-
able data. This is possible due to the use of the Kalman filter for estimation.
We skip the filter step in the Kalman filter recursions to estimate trend
values with missing data.

4.2. A measure of smoothness
The smoothness index (3.1.13) for the non-autocorrelated case becomes.

SLN) =1 —tr [(Iy + AK'1K) /N (4.2.1)

Just as when d=2, the index solely depends on the values A and N since
K, remains fixed. It is important to note that K; is a matrix of rank N-1.
Therefore, the matrix K’;K; has one eigenvalue equal to zero, while the
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remaining N-1 nonzero eigenvalues can be arranged in descending order
as e; > e, > ... > exy. Consequently, the expression in (4.2.1) for the trace
can be expressed as:

tr(ly + AK',K) P =(A +2e)™ P+ .+ Q1+ 2e_) T +1

and it can be observed that S@,N) > 0 as A > 0 and SQ,N) > 1 - 1/N as
A > oo.

It is important to note that no matter how high the smooth con-
stant A 1s, the trend will never attain 100% smoothness. However, more
smoothness can be achieved with a larger sample size (NN).To find the
corresponding A for fixed values of N, we need to specify the smoothness
S@A,N)%. It is essential to remember that there is no analytical solution for
A from expression (4.2.1), so it cannot be calculated directly. Instead, the
calculations are performed numerically by keeping N and S@A,N)% fixed.

In Figure 4.2.1, the behavior of S, N)% is displayed for difterent val-
ues of N and A. Figure 4.2.1(a) depicts the impact of sample size on fixed
A values. For 2 > 50, the percentage of smoothness is greater than 95% in
all four cases shown in the figure. Additionally, Figure 4.2.1(b) indicates
that SA,N)% grows rapidly with increasing sample sizes.When N=50, the
percentage of smoothness is over 90% for A values as small as 50, and the
smoothness remains essentially constant when the sample size is greater
than 50, regardless of the A value.
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Regrettably, just like in the case of d=2, it is not feasible to derive an
analytical expression for A as a function of N and S% from (4.2.1). As a
result, Table 4.2.1 presents A values corresponding to different percentages
of smoothness for various sample sizes of daily series. These values were
computed numerically by solving equation (4.2.1) for A, using specific N
and S% values.
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In practical applications, we simplify the selection of A by searching for
an approximating function of N and S$% that fits well with the values in
Table (4.2.1).We seek several regression models for each S% and show the
estimation results of the best generic fitting models in Table (4.2.1). It is
important to note that the value of A produced by the regression models
are just approximations of the true values in Table (4.2.1). InTable (4.2.2),
it is required that ﬁﬁﬁoN be positive for A to be positive. The models in
Table (4.2.2) are helpful in interpolating and, more importantly, extrapo-
lating values for large sample sizes compared to those in Table (4.2.1).

Table 4.2.2
Estimation results of fitting models that relate 1 with N and So (Daly series)

Approximating function: A = N/(Bo(1/N)+6))
S% é. 8, R
50 1.330926 -2.441994 09989
52.5 1163152 2.236250 09988
55 1013489 2.048598 09988
575 0879735 1.877245 09988
60 0760042 172051 09989
625 0.652910 1577394 09991
65 0.557032 1.446773 09994
675 0.471344 1.328060 09996
70 0.394926 1.220657 09997
725 0.327008 1124258 09992
75 0.265943 -0966738 09989
775 0.212628 -0.853266 09989
80 0166080 0746888 09991
825 0125913 -0.648564 09994
85 0.091809 -0.550848 09992
875 0.063195 -0.452528 09992
90 0.040246 -0.366093 09990
925 0.022526 -0.273268 09991
95 0.009949 -0177600 09994

4.3. Daily data and extension to other frequencies

When estimating the trend of a time series with a frequency of observa-
tions difterent than daily, it is not sufficient to use the same A obtained for
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a daily time series. This is because the sample size changes for each type
of periodicity under consideration. For instance, if the observation period
spans the years 2015-2022, there are either 2920 daily data or 2080 daily
data by considering 5-day weeks, 416 weekly data, or 96 monthly data.
Therefore, for each of these series and the same percentage of smoothness
S%,Table 4.2.1 would lead to different A values. However, it is essential to
remember that the long-term behavior of the series must be essentially
the same, regardless of the periodicity of the time series. Additionally, it is
worth noting that a time series with a lower frequency of observation is
related to that with a higher frequency using some aggregation mecha-
nism. Maravall & Rio (2007) recognized this fact and proposed difterent
solutions to find A values that produce equivalent results on time series
with different periodicities, from a frequency domain perspective.

In cases where time series are nondaily, the selection of the smoothing
constant will be determined by a time domain methodology that produces
an equivalent level of smoothness as the daily series. This methodology
considers the aggregation type that connects a lower-frequency series
{Y';} with a higher-frequency time series {Y}.

The aggregation is assumed to be linear, that is,

k

Y = Z 8 Yeronye; forT =1,..,n (43.1)
=

with n=[N/k], where [x] stands for the integer part of a real num-
ber x, and k is the number of Y, observations between two succes-
sive observations Y';. The constants §; determine the aggregation type.
For example, §,=8,= -+ =§,=1 is used to aggregate a flow series and
§,=8,= -+ =8,=1/k 1s used for working with an index or an annualized
flow series (which is also considered a flow series). When working with
a series of stocks, the aggregated time series is generated by systematic
sampling. In this case, the usual values are §,=1,8,= --- =§,=0 or §;=§,= -
=§,.1=0, §,=1.Without loss of generality, in what follows we shall assume
that §,=6,= ---=§,=1 for a flow time series and §,=6,= --- =§, , =0, §, =1
for a time series of stocks. Thus, let T and t represent the time sub-index
for the aggregated and disaggregated time series, respectively, then,
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Vo= {Yt_jk + Y jk—1t -+ Y_(+1r+r, forflows L
T = We_jio for stocks * 7~

(4.3.2)

The model to be applied to the aggregated data preserves the form (3.1.5)
and (3.1.6) for d=1, that is,

Y'=g"+v" withE(Wv") =0, Var(v") = 0;%I, (4.3.3)

King* =1, + & withE(g*) =0, Var(e") =0l
(4.3.4)

and E(¢v”)=0, where " is used to denote aggregate variables. Therefore,

(4.1.3), (4.1.4), (4.1.5) and (4.1.6) become
g* = (In + AzKln,Kln)_l(Y* + A;M*Kln,ln—l) (435)

Mt =Var(@") = 6,2y + AiKin i) ™ (4.3.6)

g* = (In + AzKln’Kln)_l(In + A;;(n - 1)_1K1n,1n—11,n—1K1n)Y* (437)
&2 =YY" = &7 (L + XK Ki)§']/ (n = 1) 4™ (4.3.8)

While expressions (4.1.5) and (4.3.5) share the same form, they produce
different trends. In fact, aggregating the trend {g,} estimated from the
disaggregated series results in different values than those of the estimated
trend {g s} acquired directly from the aggregated series. Nevertheless, as it
1s shown in the Appendix, it is possible to find a smoothing constant A for
a disaggregated series that is equivalent to the 1’ value for the aggregated
data, as follows:

1= {(kz —1)/6 + k?2;, for flows (4.3.9)
kA for stocks

It is important to note that if the smoothing constant A for the disaggre-
gated time series is known, we can use equation (4.3.9) to solve for the
corresponding value of 1. This will be helpful in the analysis.
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4.4. A simulation study

To verify numerically the performance of the suggested procedure, a simu-
lation study was run. Two random walks were considered, one with drift
and the other without drift. The random walk hypothesis (Fama, 1965)
corresponds to a financial theory stating that stock market prices evolve
according to a random walk with drift (so price changes are random) and
thus cannot be predicted exactly. Let X, be today’s log-price of a stock.The
value of X for tomorrow, X, will equal today’s value, X,, plus a constant
value po, plus a random shock ¢.The shock is a random variable satisfying
€,~i.i.d.N(0, 6%). Then the random walk model is the following.

Xe = po+Xe1 t & (4.4.1)
¢ 1s a random shock for each day, resulting from the log-price movements
due to all news that influence the price, while p, refers to the drift of the
series. If | py| >0 the series is a random walk with a drift. If p,>0, then the
series will have a positive trend over time, if p,<0, the series will have a
negative trend.

To simulate a random walk, the values of the following parameters

are required.
¢ X, the first value of the series
«  po, the drift of the series
+ 07, the volatility of the random shock.
Substituting repeatedly for lagged values of X, gives

X1 =po+Xot+e&

X2:p0+X1+£2
=potpotXote te
=2p0+X0+£1+€2

Therefore, doing the same until the last T value, it follows that
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T
&:Mﬁ%+2&%ﬂ)

i=1
so that,

E(Xr) =Tpo + Xo

from this expression, p, can be estimated as

po = HX (4.4.3)

Now,

T
Var(X7) = Var(Tp,) + Var(X,) + Z Var(g;) = To?

i=1

and the measure of the shocks’ volatility, in relation to the series’ overall
volatility, is determined by:

2
@:%%w

To estimate the three parameters for simulating a random walk series,
we will employ the S&P500 daily data from Yahoo Finance, from Janu-
ary 2011 to May 2023.To achieve this, we need to generate the log of
the S&P500 index. Using (4.4.3), we obtain the value of p, equal to
0.000383058; from (4.4.4) we get the value of g2 equal to 0.006913685.
Additionally, the initial value is 7.148.We then generated random shocks
from a N(0,0.006913685) distribution. Finally, we simulated two random
walk series. The first one, called rw1, 1s a random walk with drift, while
the second one, named rw2, is a random walk without drift.

rwl, = po+1rwli | + &

Figure 4.4.1 panel (a) shows the simulated random walk with drift. We
started the random walk with the first value of the log of S&P500.Then,
from day 2 we ran the simulation according to the previous formula, using
the random shock jus created. In a similar way, we simulate rw?2 from
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TW2, =TW2i_1 + &

Figure 4.4.1, Panel (a) displays the simulated random walk with drift and
sample size of N=3122. Following Guerrero’s guideline (2017), a 95%
percentage of smoothness was set to select the corresponding smoothing
parameter from (4.2.1). For daily data, the smoothing parameter value is
A = 101.1. Panel (b) shows the daily time series and its trend. Panel (c)
exhibits the weekly time series and its trend, constructed from the daily
data. It is important to note that this is a series of stocks, and the sample
now comprises N=624 weekly observations, considering five-day weeks.
The smoothing constant for the weekly series is A's = 20.22 for S%=95%,
as obtained from (4.3.8) by A = 51's. Lastly, Panel (d) shows the monthly
time series and its trend, also built from the daily data. The sample size for
this series has N=157 observations, and the value of A for monthly data is
A5 = 5.05 for $%6=95%, obtained from (4.3.9) by A = 201'5. By visually
inspecting Panels (b), (c),and (d), we can observe that the resulting trends
with the same smoothness percentage display essentially the same dynamic
behavior, regardless of the frequency of data observation.
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On the other hand, Figure 4.4.2 Panel (a) shows the simulated random
walk without drift and sample size N=3122.Then, following Guerreros
(2017) guideline the percentage of smoothness suggested is 90% to choose
the corresponding smoothing parameter from (4.2.1), which takes the
value A= 24.9 for daily data, Panel (b) shows the daily time series without
drift and its trend. Panel (c) shows the weekly time series without drift
and its trend built from the daily data. As in the random walk with drift,
it should be stressed that this is a series of stocks (it is chosen as every
fifth value of the sample under consideration). The sample now consists
of N=624 weekly observations, considering five-day weeks. The value
of A is obtained from (4.3.8) as follows A = 51’5, therefore, the smoothing
constant for the weekly series is A's = 4.98 for S% = 90%. Finally, Panel
(d) shows the monthly time series without drift and its trend built, also,
from the daily data.The sample for this series is N=157 observations.The
value of A for the monthly data is also obtained from (4.3.8) as 2 = 201,
and takes the value 15, = 1.245 for S%=90%. In the same way, by a visual
inspection of Panels (b), (c), and (d), the resulting trends with the same
percentage of smoothness show essentially the same dynamic behavior,
no matter what the frequency of observation of the data is.
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4.4.1. Same time series with different sample sizes

It is important to note that trends obtained with the same percentage of
smoothness are comparable even if the sample sizes differ, just like in the
case of d = 2.To demonstrate this, we estimated the trend of the monthly
random walk without drift, previously shown in Figure (4.4.2) Panel (d),
with different sample sizes. To achieve this goal, we need to obtain the
A’y value of the monthly series, which is equivalent to the smoothing
parameter A used with the daily series. In the case of a stock series, the
equivalent smoothing constants are related by A = 201",,. For sample sizes
of daily data, N=84, 52, and 36, the values of lambda that produce 90%
of the smoothness of the trend are 1=24.982,1=25.066, and 1=25.165,
respectively. Therefore, the corresponding smoothed parameters for the
monthly series are A, = 1.249,1",, = 1.253 and 1’5, = 1.258.The resulting
trends are depicted in Figure 4.4.3, and it can be observed that the trend
estimates are reasonably close to each other.

Based on the examples given, it is evident that the A values in Table
4.2.1 and the values derived from the fitting models in Table 4.2.2 work
best for time series comprising daily observations.The process for select-
ing the smoothing constant of a daily time series can also be applied to
other types of time series. The formula for determining the equivalent
smoothing constant is simple for flow and stock series. Moreover, using the
daily observation frequency as a standard reference point offers empirical
benefits. Thus, we address the issue of finding the trend for the same time
series with different periodicities. Our findings suggest that trends with
the same degree of smoothness, but different periodicities, display similar
dynamic behavior.
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Chapter 5
Empirical Applications

In this chapter, we showcase how our developed UCS web-tool can be
used to obtain trend and cyclical components of observed time series.
We present three examples, two of which come from economics and
one is financial. The first problem we address is related to the high levels
of crime rates faced by Mexican society for almost three decades. The
second example measures the impact of monetary policy decisions made
by Mexico’s Central Bank on economic activities in different regions of
Mexico.The third example studies the long-run evolution of oil prices.

5.1 Case 1: Economic growth and crime

Let us start with the problem of public insecurity. According to Mexico’s
Federal Penal Code (FPC) crimes can be classified into two types: Fed-
eral Crimes (FC) and Common Crimes (CC). In general, FC are those
that affect people’s health, heritage, and the nation’s security. For instance,
offenses like treason, espionage, sedition, rebellion, and terrorism among
others. CC on the other hand, are those that affect directly to people as
individuals. These are organized by the type of legal right affected; that
is, life and bodily integrity, personal liberty, sexual liberty and security,
property, family and society among others. Examples are robbery, extor-
sion, rape, etc.

By its nature, CC represent the most serious challenge to Mexican
authorities since almost 95 percent of total crimes are common crimes.
To the extent that they involve a wide range of felonies, it has been very
difficult to pinpoint their main determinants. However, an increasing
number of studies have been able to identify key characteristics of their
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behavior over time. This identification process shall eventually help us
define and implement a public security policy that would attenuate and
even reduce the level of crime significatively.

Since the mid-90s crime analysis has been a growing area within
criminology that uses not only different theories of crime but methods of
analysis as well. For instance, analyses of crime by geographical areas, -led
by Place Theories of Crime-, have allowed researchers to identify crime
hotspots, i.e., areas with high crime intensity. Moreover, for Crime Pattern
Theory, crime is not a random phenomenon since it is either planned or
opportunistic (Brantingham & Brantingham, 2008). In eftect, this theory
sustains that those criminals commit their crime in specific areas and times
that respond to victims’ and offenders’ patterns of behavior.

Within criminology there are competing theories about how to ana-
lyze and identify the key determinants of crime. Environmental criminol-
ogy, for instance, is a family of theories that focus on crime events, the
circumstances in which they occur and their changing nature, while crime
economics focuses on identifying the main determinants of individual’s
criminal behavior and evaluating their economic impact. In any event, all
theories need to test their hypothesis so that they can make predictions
about emerging problems or future trends. This information will help
develop strategies that might be employed to prevent crime.

Nowadays, there are different statistical instruments that help analyze
crime data. These instruments can help us identify spatial as well as tem-
poral patterns of crime. Spatial-temporal patterns of crime can be ana-
lyzed using spatial econometrics, while temporal patterns can be studied
through time series econometrics. As already discussed in the previous
two chapters, a first step is the decomposition of the series into its trend
and cyclical components.

Time series of crime can refer to any type of crime (burglary, kid-
napping, fraud, rape, robbery, etc.) and its scope can be a neighborhood,
county, city, region, or country. Therefore, the use of time series tech-
niques is flexible and can be applied to any type of crime or to any level
of aggregation. Study of the trend component is more associated to the
study of the long-term behavior of the series; that is, the crime behavior
that is persistent over time.

There are several explanations about the persistence of crime. From
the economics of crime’s perspective, once a person has committed a
crime, his/her criminal human capital relative to his/her legal human
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capital has increased. This higher (relative) criminal human capital makes
the individual not to give up easily criminal activities. This effect might
be reinforced by the fall of learning costs associated to criminal activities,
which will increase crime’s rate of return. Another explanation is based
on the effect that crime has upon the interaction between moral costs and
learning of crime technology; that is, before a person commits any crime,
both high moral costs and low knowledge of criminal technology act as
crime deterrent factors. But once this person starts committing criminal
activities, these deterrent factors start disappearing, i.e., moral costs fall
while learning crime technologies increase.

These arguments help us understand why we observe crime’s long-
term behavior. But the analysis of the long-term component would also
tell us whether there were changes in the underlying factors that explain
it and in what direction. In addition, we can also use the long-term com-
ponent to predict long-term behavior.

In what follows we analyze the behavior of total crime in four Mexi-
can States: Nuevo Leon, Mexico City, Jalisco, and Guanajuato. Mexico
City, Nuevo Leon and Jalisco are three of the largest states in terms of
population. Guanajuato, on the other hand, is one of the fastest growing
States in manufacturing. We are interested in comparing the evolution of
their crime levels’ trend component.

Figure 5.1.1 displays quarterly total crime data from 1997-1 to 2017-
IV in Nuevo Leon, Mexico City, Jalisco, and Guanajuato.The data shows
non-linear behavior with no overall trend, and the concept of stochastic
local trend seems better to describe the underlying dynamics of the trend,
so we chose ¢ # 0.
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Figure 5.11
Quarterly total crime data from 1997-1 to 20171V

in Mexico City, Jalisco, Nuevo Leon, and Guanajuato
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The suggested percentage of smoothness of 80% was used to select the
smoothing parameter, based on Guerrero’s (2017) guideline, resulting in
A=14.05 for a sample size of N=83 quarters. The smoothness percentage
was kept constant among the four series under study to enable adequate
trend comparison. To illustrate the use the UCS web-tool to estimate of
the trend and cycle’s components we use the time series of Mexico City’s
total crime.
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To the left of the UCS tool (in Figure 5.1.2), we select parameters related
to the filter we want to use;in this case, we chose p # 0, a difference order
(d) equals to 2, two standard deviations (SD) for the estimated error
bands of the trend, noncorrelation, p=0 (see section 3.4), and percentage
of smoothing S%= 80%. Figure 5.1.2 displays trend estimates (Graph 1),
as well as cycle estimates (Graph 2) once data in .csv format for the uni-
variate crime time series was uploaded. The estimated trend component
(@) is shown with +2 standard error bands, while the estimated cycle
component (y, - §) is shown below it. Our results were downloaded in
.csv format for additional analyses, by just pushing the top-right button
(“Download results in .csv format”). We estimated the trend and cycle
of the total crime series for the other States, i.e., Jalisco, Nuevo Le6n and
Guanajuato in a similar manner.

Figure 5.1.3 shows total crime’s long-term evolution during the
period of analysis. Except for Mexico City, total crime shows an upward
trend in Nuevo Leon, Jalisco, and Guanajuato.The graph also shows that
crime in Nuevo Leon and Jalisco evolves in a parallel fashion since the late
90s. A third characteristic is that among these States, Guanajuato shows
higher long-term growth of total crime.

Figure 5.1.3
Trend of Total Crime in selected states: 1997-1 to 2017-1V

Source: Own estimates

‘We now evaluate the relationship between the Index of Physical Volume’s
and Total Crimes’ cyclical components following the methodology pro-
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posed by Kydland & Prescott (1990).Table 5.1.1 presents the estimated
cross correlations between output and crime’s cyclical components for the
selected entities. Each cell represents the value of the correlation between
the cyclical components of the Index of Physical Volume (IPV) and Total
Crime (TC) at different lags for each of the selected states,

Table 5.1.1
Cross Correlation between the cyclical components

of the state's Index of Physical Volume and Total Crime

State
Nuevo Leon Jalisco Cd Mexico Guanajato
X(t-8) -0.078 -0.068 0133 -0.063
X(t-7) -0149 -0188 -0193 -0.262
X(t-6) -0.064 -0152 0.032 0.091
X(t-5) 0.204 0.23 -0.018 0.047
X(t-4) 0.078 -0.078 o.2M 0104
X(t-3) -0.066 -0.088 -0129 -0.071
X(t-2) -0.061 -0.078 0.042 0106
X(t-1) ons 0197 -0158 -0.096
X(t) 0.035 -0.034 0l4 -0.034
X(t+1) om -0155 -0198 -0.203
X(t+2) 0.052 -0129 -0.015 0.094
X(t+3) 0149 0.241 -omnd 0.04
X(t+4) -0.034 0.001 o174 0123
X(t+5) -0103 -0153 -0137 -0.061
X(t+6) -0102 -0.029 0.058 0164
X(t+7) 0.048 0145 -0.085 -0.003
X(t+8) -0.057 0.095 0.224 0.05

Source: Own Estimates

In the case of Nuevo Leon, we observe that there is a slight indication that
it may be procyclical; however, crime might anticipate economic activity
by about five quarters. Crime in Jalisco, on the other hand, seems to be
procyclical as well; however, it appears to lag economic activity by about
three quarters, that is, crime is procyclical. Crime in Mexico City also
seems to be procyclical, but the strongest correlation occurs when crime
lags to economicactivity by eight quarters. Unlike the previous cases, the
crime and economic activity seems to be countercyclical in Guanajuato.
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The cross correlation is strongest in the seventh quarter when crime
antecedes economic activity.

In short, Table 5.1.1 present some evidence about the relationship
between the cyclical components of economic activity and crime. The
results, however, are not as conclusive as one might have expected. A pos-
sible explanation is that the crime variable may need to be more specific.
In our analysis we have used total crime, probably we would need to use
economic crimes instead. Another element that we need to consider is
whether the Index of Physical Volume is the proper indicator of economic
activity. Perhaps a more precise indicator could be an income indicator.

5.2. Case 2: Regional Effects of Monetary Policy in Mexico

For this example, we also use Kydland & Prescott”s (1990) proposed meth-
odology to analyze business cycles to explore the regional impact of mon-
etary policy in Mexico. To recall, the latter is based on the estimation of
cross correlations between the cyclical components of monetary and real
sector variables against the GDP’s cyclical component. Our interest is to
somehow evaluate the effect of monetary policy upon output fluctuations
in a selected group of Mexican States. As is well known, Mexico’s Central
Bank, Banco de México, is the sole authority that determines the country’s
monetary policy. Since 1994, it has been an autonomous monetary author-
ity that officially adopted inflation targeting as its strategy to maintain price
stability in 2002; albeit it had begun implementing early measures towards
that goal since 1995 (Ramos-Francia & Torres-Garcia, 2005).

Banco de México’s decision was in tune with other Central Banks’
decisions around the world about implementing inflationary targeting as
a framework to conduct their monetary policy. The main goal of such a
strategy is price stability, achieved through the setting of a nominal anchor
to tie down the price level. It is argued that inflation stability is a necessary
condition for sustainable growth for several reasons. First, it induces low
inflation expectations which affects positively private sector’s investment
decisions. Second, it contributes to an efficient allocation of resources
since relative prices are likely to remain stable. Third, low and stable infla-
tion implies low social and economic costs since the purchasing power of
money remains stable; thus, consumers enjoy higher welfare. An additional
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positive outcome is that there is no redistribution of income from loaners
to borrowers, which would induce more savings.

To accomplish its goal, Banco de Mexico (Banxico) sets the equilib-
rium interbank interest rate (TIIE) based on quotes presented by credit’s
institutions. The initial change in interest rate affects inflation through
several channels. These channels, also known as transmission mechanisms
of monetary policy, affect both aggregate demand and supply to different
degrees, both of which induce price changes. In other words, to achieve
its objective of price control, monetary policy induces changes in the
economy’s real sector.

Let us see what these transmission mechanisms are and how they
work. Banxico in its statement about the effects of monetary policy
(Banco de México, 2023b)! reports five different transmission channels:
1) interest rates, i1) credits, ii1) exchange rates, iv) other assets’ prices, and
V) expectations.

In the first case, Banxico decides to change short-term interest rates
when inflation expectations are off its expected values. In general, an
increase in the interest rate increases capital’s costs to finance projects as
well as the opportunity cost of current consumption. These two factors
constrain demand, and thus price growth. Credits, in turn, are also affected
by the increase in interest rates since now it is more expensive to finance
investments and purchases. Financial intermediaries may also decide to
restrict the amount of available credit since the risk of default is greater.
All in all, aggregate demand is negatively aftected.

The exchange rate channel kicks in when the domestic interest rate
makes more attractive domestic financial assets compared to the foreign
ones. In this case, there is an influx of foreign capital which appreciates
the domestic currency.As a result, net exports tend to decline, i.e., exports
decline while imports increase. An additional effect of the depreciation
of foreign currency is that it affects overall domestic prices directly since
prices in domestic currency of imported goods decline. In short, the
exchange rate channel affects not only the real sector of the economy, but
also the price level directly.

The fourth channel operates when the increase of the interest rate
makes Bonds more attractive than other financial assets, in particular stock

1. A further description can be found in Banco de México (2023).
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prices, which, in turn, may have as an unintended consequence the decline
in the market value of some private firms. The latter may further com-
plicate these firms” access to finance new investment projects, which will
result in a decline in aggregate demand.

The last channel, expectations, -and in particular inflation expec-
tations-, have become a very important channel since depending on
whether they are off targets, can induce Banxico to modify its monetary
policy. However, as Tobias (2023) points out there are different expecta-
tions; for example, near- and long run-time expectations. There are also
households’, markets’, and forecasters’ expectations, and Banco de México
must consider the behavior of all of them in its decision-making process.
This is so because they affect economic agents’ consumption and invest-
ment decisions. Long-term expectations are also considered indicative of
the Central Bank’s credibility in controlling inflation.

It is well known that Mexico’s economy is characterized by having
great regional contrasts. The regional differences include not only dif-
ferences in endowments, climate, but also in productive structure and
stage of economic development. Given these differences across states or
regions we are interested in exploring how different are the eftects of a
given monetary policy across a small group of Mexican States. To do that
we propose to use Guerrero’s filter to obtain the cyclical components of
an indicator of monetary conditions as a proxy of monetary policy and
of the economic sectors for a group of five Mexican States.

Therefore, we estimate a Monetary Conditions Index (MCI). We
argue that MCI can be a good alternative indicator of monetary condi-
tions when we are dealing with a small open economy like Mexico. In
an open economy with free capital mobility and exchange rate market,
interest rates” increases might induce an influx of financial capital which,
in turn, induces an appreciation of the domestic currency; that is, a con-
tractive monetary policy is reinforced by an appreciation of the domes-
tic currency which further contracts aggregate demand. There are other
instances when monetary conditions change without explicit intervention
of the Central Bank. For instance, foreign banks may decide to change
their relevant interest rates or when there are external shocks that affect
trade balances that, in turn, pressure exchange rates to either devaluate or
appreciate the domestic currency.

However, the use of MCI as an indicator of monetary policy is not
without controversy. As Stevens (1998) has pointed out there are some
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problems with its use as an indicator of monetary policy because monetary
conditions may change even when the Central Bank has not modified
any of its instruments as is the case when there is an unforeseen external
shock to the foreign exchange market. There are other issues that we shall
not discuss here because it will deviate us from our main objective. Let
us just say that MCI is not an instrument of monetary policy, it is just an
alternative indicator of monetary conditions that affects the economy’s
real sector. In that sense, it tells us whether the monetary conditions are
favorable to aggregate demand or not. An increase of the MCI is seen as
tighter monetary conditions, whereas a reduction of the MCI is associated
to looser monetary conditions, thus favoring aggregate demand (Stevens,
1998; Costa, 2000).

We follow Stevens’ formulation to estimate the MCI. We start with
the estimation of the interest rate and exchange rate weights, respectively.
Those weights are estimated from the following equation,

y: = —ary — Be; + other var's (5.2.1)

Where y is output, r is the interest rate, e is the exchange rate (US dollars
per peso). The coefficients, a, § are the interest rate and exchange rate’s
weights, respectively. Equation (5.2.1) is a simplified version of a more
general model that can include lags or other variables. The MCI, on the
other hand, is defined as,

MCl, = (. = 15) + £ (e — €5) + 100 (5.2.2)

To estimate equation (5.2.1) we use first differences of: Gross Domestic
Product, nominal interest rates (29 days) and exchange rate®. We included
two dummy variables to control for the decline in GDP in 1999 and 2013.
The resulting weights were: a = -0.0193245; = -0.0310272.We use the
first quarter of 1997 as the reference period for both the interest rates and
exchange rates. We obtained the following MCI,

2. First difference of the exchange rates was estimated as Ve=In(e), - In(¢)..;. Where e is the exchange
rate (dollar per peso).
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Figure 5.2.1
Mexico's MCI,1997-1-2022-1V

Source: own estimates

Figure 5.2.1 shows the resulting MCI during the period 1997-1-2022-1V.
Compared to 1997-1, the monetary conditions in the Mexican economy
can be characterized as loose until 2001-III. After an initial short period of
stringent monetary condition (2001-1-2005-1I), the conditions remained
stable with some fluctuations until 2015-1. Beginning 2015-1, monetary
conditions were stringent until the pandemic. The last two years 2020-
2022, monetary conditions were somewhat looser.

We estimate the cyclical component of this indicator to evaluate its
relationship with the cyclical components of the index of physical volume
of five Mexican States: Mexico City, Jalisco, Guerrero, Chihuahua, and
Nuevo Leon. One might expect that the relationship between the cycli-
cal components of the MCI and economic activity may depend on the
type of economic activity we are analyzing; thus, we use three indicators
of economic activity, one for each economic sector: primary, secondary,
and tertiary economic sector indexes. This will give us an idea about the
type of relationship that there may be between monetary conditions and
real sector.

To illustrate the selection of parameters in the filter, Figure 5.2.2
displays the quarterly Index of Physical Volume from 1997-I to 2022-1V
of the Primary Sector for Mexico City, Secondary Sector for Jalisco, and
Tertiary Sector for Guerrero. The data in Figures 5.2.1 and 5.2.2 shows
non-linear behavior with no overall trend, and the concept of stochastic
local trend seems better to describe the underlying dynamics of the trend,
so we chose u#0.
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Figure 5.2.2
Quarterly Index of Physical Volume from 1997- to 2022-1V in the Primary Sector for

Mexico City, Secondary Sector for Jalisco, and Tertiary Sector for Guerrero

The suggested percentage of smoothness of 85% was used to select the
smoothing parameter, based on Guerrero’s (2017) guideline, resulting in
A=43.05 for a sample size of N=104 quarters. The smoothness percent-
age was kept constant among the six series which would enable adequate
trend comparison.

Figure 5.2.3 shows the UCS output displays trend estimates of the
MCIL ¢, (Graph 1), and cycle estimates (Graph 2). On the left side of the
UCS tool, we selected the parameters to filter the series, we chose u# 0,
a difference order (d) equals to 2, two standard deviations (SD) for the
estimated error bands of the trend, noncorrelation, p=0, (see section 3.3),
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and percentage of smoothing S%= 85%. Our results were downloaded in
.csv format for additional analyses, by just pushing the top-right button
(“Download results in .csv format”). We estimated the trend and cycle of
the remaining series in a similar manner.

Tables 5.2.1,5.2.2. and 5.2.3 present the estimated cross correlations
between the cyclical components of the MCI and the sectors’ index of
physical volume for each of the five selected States.

The results suggest that in general the secondary sector is countercy-
clical and lags between one quarter (Nuevo Leon and Jalisco), two quarters
(Mexico City and Guerrero) and six quarters (Chihuahua), although in
this latter case output seems to be procyclical. The evidence in the ter-
tiary sector points to a mixed relationship, i.e., it is procyclical for some
states (Nuevo Leon, Jalisco, and Chihuahua), whereas is countercyclical
in Mexico City and Guerrero. In this latter case, the economic activity
lags the change in the MCI one quarter. An additional comment is that
in the case of Nuevo Leon, Jalisco, and Chihuahua their tertiary sectors
are antecede the change in MCL

In the case of the primary sector, the relationship between the sector
and the MCI is interesting for in all five states the change in the primary
sector antecedes the change in the MCI. Furthermore, we found evi-
dence that there is a positive relationship between the sector’s evolution
and MCI (Jalisco, Chihuahua) and a negative relationship in states like
Mexico City, Guerrero.
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5.3. Case 3. The long-run evolution of oil prices

Energy producers and consumers often analyze the causes of price vola-
tility of oil, coal, and other resources. Producers are interested in price
volatility for strategic planning and assessing investment decisions, such
as resource exploration, reserve development, and production. Industrial
consumers, like petrochemical companies or electric utilities, also share
this interest because oil, coal, and natural gas are essential input costs that
can influence investment choices. For instance, they may need to decide
between building an oil- or coal-powered plant for an electric utility or
selecting products to manufacture.

The growth rate of prices may reflect a depletion of resources or
technological changes. Some may assume that prices will continue to grow
from their current level, following a random walk with a drift. Others
may assume that prices will revert to a trend line that either increases or
decreases. This behavior would be consistent with the idea that the resource
is produced and sold in a competitive market, so the price will eventually
return to the long-run marginal cost. This cost is likely to change slowly,
indicating that price shocks are temporary. Over a long enough period,
prices are more likely to be mean-reverting rather than random.

In this example, we focus on oil prices. The literature on the sources
of oil price fluctuations agrees on the role of global demand conditions.
Elekdag & Laxton (2007), Elekdag et al. (2008), and Kilian (2008) empha-
size the importance of aggregate demand. Barsky & Kilian (2002) and
Kilian (2009) argue that global demand played a significant role in the
recent oil price episode and was also influenced by supply conditions.
Hamilton (2009) mentioned that disruptions in crude oil production,
caused mostly by geopolitical events, played a large part in determining
oil price dynamics; additionally, he pointed out the role of speculation on
the oil market as an extra source of volatility.

Based on the above discussion, numerous empirical studies have tried
to understand the fluctuating nature of oil prices. Sadorsky (1999) sug-
gests that a stochastic trend should be taken into account due to the rise
in the volatility of oil prices after the mid-1980s. Similarly, Morana (2001)
demonstrates alternating periods of high volatility in oil price changes,
which can best be analyzed using a stochastic local trend.

In this example, we use daily Brent oil spot prices ranging from January
3,2000- June 23,2023.Throughout the day, the price of Brent crude in the
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Spot market fluctuates due to various factors, such as geopolitical and eco-
nomic events and changes in supply and demand. It is worth noting that the
daily prices published by the Energy Information Administration represent the
market closing price, which is considered the day’s benchmark.The price of
Brent crude is measured in dollars per barrel (USD/B) in the Spot market.

Figure 5.3.1 displays the plotted oil price level and its absolute rate of
change. Two significant observations can be made. Firstly, the oil price level
does not follow a global trend, and the concept of stochastic local trend
seems better to describe the underlying dynamics of the oil price series.
Secondly, the absolute rate of oil price change shows alternating periods
of high volatility followed by relative tranquility. These two features are
commonly found in speculative asset prices.

Therefore, we will examine how oil prices change over time by break-
ing them down into its trend and cycle components. The trend compo-
nent follows a stochastic trend with a drift as follows,

price,y, = trend,, + cycle,,
With a time series specification for the trend as:

trend, . = p + trendy; ey + & or Virendy;, = u+e¢ fort=2,..,N

Following Guerrero’s (2017) guideline, a smoothness percentage of 90%
was set to select the corresponding smoothing parameter from the informa-
tion in Table 4.2.2. For a sample size of N= 6122 daily data, the smoothing
parameter value is obtained from A = 6122/(-0.366093+0.040246 * 6122) =
24.9,as indicated in Table 4.2.2. Figure 5.3.2 Panel (a) shows the daily time
series and its trend. Panel (b) exhibits the weekly time series and its trend,
constructed from the daily data. It is important to note that this is a series
of stocks, and the sample now comprises N=1224 weekly observations,
considering five-day weeks. The smoothing constant for the weekly series
is X5 = 4.98 for S%=90%, as obtained from (4.3.8) by A = 52's. Lastly, Panel
(c) shows the monthly time series and its trend, also built from the daily
data. The sample size for this series is N=281 observations, and the value
of A for monthly data is X', = 1.24 for S%6=90%, obtained from (4.3.8) by
A = 2015. By visually inspecting Panels (a), (b), and (c), we can observe that
the resulting trends with the same smoothness percentage display essentially
the same dynamic behavior, regardless of the frequency of data observation.
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Figure 5.3.2. Panel (a), daily current prices and estimated trend with
S%=90% (, = 24.9),sample size N= 6122.Panel (b), weekly current prices
and estimated trend with S%= 90% (,’5 = 4.98, N=1224 observations. Panel
(c), monthly current prices and estimated trend with S%= 90% (,5, = 1.24,
N=281 observations.

In his analysis of oil prices between 2007 and 2008, Hamilton (2009)
suggests that three factors played a significant role in shaping the dynamics
of the market. Firstly, the global supply of crude oil was affected by the
failed attempt to increase productive capacity between 2005 and 2007.
The pressure in each oil field eventually reduces over time, leading to a
decrease in production. Secondly, the demand for crude oil continued
to increase globally, particularly in China, which went from importing
800,000 barrels per day in 1998 to 3.7 million barrels in 2007. As a result,
the market became imbalanced by 2007, leading to a significant reduc-
tion in crude oil inventories worldwide. Finally, ccording to Hamilton's
research, a speculative bubble was formed during those years that eventu-
ally caused prices to skyrocket. In other words, speculation in financial
markets was one of the reasons that led to the historical maximum price
of oil. On the other hand, Masteres (2008) stated that the rise in price
since 2007 was due to investors who started purchasing oil as a financial
asset rather than a consumer good.

In early July 2008, oil prices reached their all-time high, but then they
tell sharply to $40 per barrel in December of the same year. This was due
to the global financial crisis, which caused a decrease in economic activity
worldwide.As a result, oil demand also decreased significantly (opEc, 2008).

According to Figure 5.3.2, the exponential filter accurately identifies
the trend dynamics between 2007 and 2009. This is because during this
period, there was a significant episode of price growth from February
2007 to June 2008, followed by a period of falling prices from July 2008
to February 2009.These findings are consistent with what we can observe
in the historical price series.
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The drop in oil prices that occurred in mid-2014 is believed to be due
to the advancements in oil production technology. The United States' oil
supply grew significantly due to the development of hydraulic fracturing
(fracking), enabling it to exploit vast reserves in Texas and New Mexico
in the Permian Basin.This event is known as the fracking revolution (The
Usa Shale Oil Revolution). By 2014, crude oil production in the United
States had increased by 80% compared to 2008 (Bordoft & Losz, 2015).

The exponential filter results suggest that from June 2014 to Decem-
ber 2015, the state of trend decline dominated the process. This trend's
behavior is consistent with the information mentioned above.

In 2020, the price of crude oil fell considerably due to two primary
reasons. Firstly, the covip-19 pandemic caused a reduction in economic
activity worldwide. Secondly, a price war erupted between Russia and
Saudi Arabia, as they could not agree on reducing the volume of crude
oil produced. As a result, both countries increased their production, which
led to a market flood and a subsequent price drop.The prices of various
futures even reached negative values, indicating the lack of storage capacity
and the urgent need to balance the market (Johnston, 2022). The exponen-
tial filter accurately recognizes the impact of the covip-19 pandemic on
the market, as Figure 5.3.2 shows the oil trend price became dominated
by falling prices from December 2019 to May 2020, consistent with the
historical series of prices. The lowest price was recorded in March 2020.

To summarize, the exponential filter accurately represents the sig-
nificant events that have impacted the long-term trends in oil prices,
regardless of the data's periodicity. For instance, during the price slump,
we can observe that the trend reduced during the 2008 financial crisis,
the emergence of fracking in 2014, the covip-19 pandemic, and the start
of the Russian invasion of Ukraine. Graph 5.3.2 demonstrates that the
trend estimated with the exponential filter encompasses all the relevant
price drops since 2000. It also correctly describes the behavior of price
stability and growth throughout the analysis period.
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Appendix
Technical details

Proofs of (3.1.8)

By applying GLS to (3.1.7) we obtain the following estimation equation.

, N AU - Y , o OV Onxu-g - I
(In Ka)( v ZX( )> ( 1 )=(11v Ka)( v ZX( )) (KN)Q
Ow-ayxnv ~ Oely-a HIN-a Ow-ayxv ~ Oeln-a d

We can solve for ¢ as follow.

1 -
9= 0 Vxn 0Nx(N—d)> (IN)

-1
o Vixn  Onxn-a ( Y )
Kq

1
Iy Kq°
(N d)< ]N

Uy~ K )<
N ¢ Ow-ayn  02In-a Ow—ayn  0fIn—a

= (05 Vyan + 05 2Ka'K) 7 (0, *Vigw Y + 052 Kg uly_g)
= 02 (Vydy + 020:2Ky ' Kg) " oy 2(Viaxw Y + 020 2Ky uly_g)

= (Vsn + AK ' K) 7 (Ve ¥ + 2Ky 1y_g),

where the smoothing parameter is defined as 1 = gZ0;% = a2 /0?.
The GLS estimator ¢ is unbiased, that is,
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Proofs of (3.1.9)

The variance-covariance matrix of ¢ is given by
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Proof of (3.1.12)

To proof (3.1.12), first note that
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and define the residual vector as
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This matrix has the important property of idempotency:

I _ i \=1 (1= N B i \=1 (1= ,
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I _ s N—1 1y — ,
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Moreover, M is a projection matrix, that is

I I _ o N—1 - ~ (]
M (i) = () Wiy + 2K KD Wi KD (i)

I - vpr el frr— , I
= (KN) (VleN + AK, Ka) 1(VNX1N + AK,4 Kd) = (KN),
d d

therefore, the residual vector can be expressed as follows:

er= (%)= G0 ()= Corca= () o+ (7))

= (y—q — M) (Il(li)g + (zny-a — M) (_Vs) = [(11(1\;) -M (1[(1:;)] g+ y_g—M) (_Vs)
= (IZN—d - M) (_vs)
(A1)

On the other hand, given that t(AB)=tr(BA), where tr stands for the trace
of a matrix, we have that

tr(M) = tr <(11<,;) (Vi + AKd’Kd)_l WVily Ade)) =eor(Vyly k) (;’2) (Vi + AKd’Kd)_l

= tr(Vyuw + Ko Ko) Vian + 2K K™t =tr(l,) =N
(A.2)
Now, use (A.1), (A.2) and the fact that a scalar is its own trace to obtain:
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E(ex'07'en) = B[ —&)(layq~ M) Uy~ ) ()]

=B{ =) [tae = (BN Wiy a0 @ K]0 - (7))

=E {(‘V —£) [Q_l - (Al;{vd) (Iy + KK Iy Kd’)ﬂ_l] (Ioy—a = M) (_vs)}

_ , , _ 1171 —1 . -1 . Vixn Onsv—a) " v
- E{(v —&) [g - ( l[}]{);N) (Viaw + AKo'Ke) Uy Ko )(O(N_d)m pt IN_d) Uan-a—m)(")

=e{o o]t - () it ) ity 1)) G -0 (7))

2K,

=E{tr{(v' e [0 (V) ity + 2 KD i 2K G ) (_”s)}}

1K,

1K,

—E {tr (C)o —eofo () ity + 00 Vit 38))] G - M>}}
= {tT‘ {E (_vs) (V’ —«‘5') [Q_l - (le%:v) (V[TI;N + le'Kd)il(VﬁiN AKd’):I (IZN—d - M)}}

-1
=tr {0'39 [Q_l - (V;;ZN) Vivew + A4 'K )™ Vi le’)] (T M)}

-1
= ager{laa - a (") Wik + k) iy AKD)] Gowea = 0]
d

Vs Onxv-ay (V3L _ ,
= oltr {[IZN—d - (0 -1 ( ;;;XN) Vitw + A K) 7 Wiy AKG) | oy—a — M)
(N-d)xN N-d d

= oftr {[IZN—d - ([1(1\;) Wiin + AKg 'K 7 (Vi AKd’)] (zn—a — M)}
= aitr{(y—a — M)Uzy—qg — M)} = oZtr(lyy—q — M) = 6Z(N — d)
(A.3)

On the other hand, the generalized sum of squares can also be expressed
as follows:
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Vs Onxv—a)

ra— o s v PSRN e
ex O lex= (¥ —s)< >( §)=VVN§NV+A££

Ov—ayxnv ~ Aly—a
=Y -9 V(Y —9) + A(Kq9 — p1y_) (Kqg — ply_y)
=YVia¥ + Vg + M@Ky Kqg + MZl,N—le—d)

=Y VY + ' (Vaoy + 2Ky 'K G + (N — d)Ap?
(A.4)

Then, combining (A.3) and (A.4) we show that (3.1.12) is an unbiased
estimator of g:2.

Proof of (3.1.23)

This proofis completely based on the following work of Theil (1963).

Lemma: Let P and Q be two positive-definite or positive semi-definite

matrices of size HxH and let A(P, P+ Q) be a scalar function which mea-

sure the share of P in the matrix (P + Q). Let us suppose that:

i APP+Q)+AWQP+0Q)=1

i. A(0,Q)=0 and A(P,P) =1

. AK'PK,K'(P+ Q)K) = A(P,P + Q) for all squared and nonsingular
K-matrices.

V. A(aP, + (1 — )Py a(Py + Q1) + (1 — @) (P, + Q) = aA(Py, Py + Q1) + (1 — @)A(P,, Py + Q3)
with P, Qy, P, and Q, positive-definite or positive semi-definite
matrices,such that P, + Q; =P, +Q, and 0 < a < 1.

The only A which satisfies these four criteria is
AP,P+Q)=Tr[P(P+Q)'I/H (A.5)

Expression (3.1.23) is deduced from property (i) of A
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S(LN) = A(072K, Ky, T) = A(072Ky 'Ky, (07 2Virdy + 072K 'Ky))
=1~ A0y *Vign, (05 Vit + 022Ky Ka))
—217-1 (~—27/-1 2 V1
= 1= Tr [0y 2Vl (07 Vi + 072Ky Ka) " |/N

=1 —Tr[Vyew(Vian + AKg'Kg) ' 1/N

Proof of (3.3.2)

The noise component follows the AR (1) process
Ve =pVeq+ ¢ fort=1,2,..,Nandv, = {;,where |p| < 1.

Although the time series is observed at time ¢ = 1, the process is regarded
as having started at some time in the remote past. Substituting repeatedly
for lagged values of v, gives

= (A.6)
Ve = Z pICej + P]Vt—]

Jj=0

Now;, since |p| <1, the component p/ is negligible, since for J large, that
is, as | > oo, it effectively disappears and so if the process is regarded as
having started at one point in the remote past, it is possible to write (A.6)
in the form

© (A7)
Vtzzpjzt_j, t:1,2,...,N,
=

and, since summing the squared coeflicients as a geometric progression
yields
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D =1/ -p?)
=0

Therefore,

J-1
E(v) = Z p/E(vi—;) =0,
=0

2
y(0) = Ew?) = E <Z pf@,-) =0 ) p¥ =a2/(1-p?)
j=0 j=0

(k) = Evens) = ¢ (Z plpet + p"> = o2k ) p¥ = a2t/ (L= p?) ke =1,2,....

j=1 Jj=0

Then, assuming o7=1, it follows that (3.3.2)

1 p pN”
1 1 N—
Var(v) = o2V = =2 P p
pN=1 o2 1

Proof of (4.3.8)

Without loss of generality assume ¢ = 0 in (4.3.3) and from (4.3.4) it
follows that

Vi = &5 + V'vp (AS)

where V* is the first order difference operator for the aggregated series, so
that {¥7} is represented by an Integrated Moving Average model of order
(1,1) (IMA(1,1)), whose variance ¥ and autocovariance ¥7 are given by

Yo = 022+ 20,7 and y; = —o;?

Similarly, assuming g = 0 and d = 1 in (3.1.6) and from (3.1.5), the disag-
gregate series follows the IMA(1,1) model
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VY, = & + Vv, (A9)
whose variance 7, and covariance 7, are

Yo = 02 + 202 and y; = —o?

To see how the two IMA(1,1) models (A.7) and (A.8) relate to each other,
consider a time series of flows, that is, let

Yr_j = Si¥e—jic with S =1+ B+ -+ B".

Since
sz 1- Bk = SkV then kat = Sk(gt + VVt),
so that
VkSkYL‘ = Slggt + Skkat.
Then, as

V'Yr = ViSiYe,
it follows that

VY7 = Skey + Sk Vi, for flows. (A.10)

Now, for a stock time series, it is known that Y'; = Y, ,and V'Y, =V, Y,
then, from the previous derivation, it follows that

V*Ys = Spe. + Viv, forstocks. (A.11)

Therefore, the autocovariance generating function of the disaggregated
series ¥(B) = £ =-07;B, is given by

V(B) = {51512(%2 + 5.V, S, V02 for flows (A.12)

51802 + V, V.02 for stocks

where an upper bar denotes the corresponding polynomial with B
replaced by B! (that is, V, = (1-B™*).
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The values 62, 62, 0;% and 0,2 that make the results of both exponential
filters to become equivalent are obtained by equating 7, and 7, to 7, and
71r- That is, by solving the following system of equations

6 20 - G ey

Where a;,, and a,;; are the coefficients of B” and B*in the polynomial
=2 . . . . = .
$2S, for the flow time series or in the polynomial SiSj for a stock time
series. Similarly, a5, and a,, ;. are the coefficient of B® and B* in the poly-
nomial S,V,S,V, for a flow time series or in the polynomial Vka in the
time series of stocks. System (A.12) has a unique solution for ;2 and 0,2,
or for Gg and 0.2, depending on which pair of variances is known. If g2
and 0,2 are known, so that X', = g,2/022 is known, solving (A.13) yields

* *
, Qi t (a12,k + 2a22,k)}'k 5 1k — (all,k + 2a21,k)/1k
g, = and o} =

A11,k022,k — 12,k 221,k A11,k22,k — 12,321,k

from which it follows that A = g2/ a2 is given by

—Q1,k — (all,k + 2“21,1()/12 (A.14)

A= -
Az i+ (a12,k + ZaZZ,R)Ak

Now, since V;V,= 2 — (B + B7¥),
SkViSiVe= 2k — k(B¥ + B™) + P, (B,B™1), ;.S =k + P, (B,B7')’

and sksk =232+ k2(k*— k) (B¥+ B7%)/6 + P;,(B,B™'),

where Py x(B,B™"), P, (B,B~") and Ps,(B,B™") are polynomials in B and
B! that have no powers of type B*, for i = 0,1. By inspection of the poly-
nomials involved, it follows that for time series of flows, a;,, = (2k*+k)/3,
ay . = (k* - k)/6,a,,), = 2kand ay,, = -k, whereas for a time series of stocks,
aye =k, ay, =0, a5, = 2 and ax, = -1.Therefore, from (A.14) follows
(4.3.9), so that

(k? —1)/6 + k%4;, for flows
a={ i
ke, for stocks
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